Белки источник энергии – Продукты с высоким содержанием белков – какие являются источником протеина для организма человека? | Здоровое питание без глютена
примеры и описание. Какие белки и где осуществляют энергетическую функцию?
Наш организм состоит из различных микроэлементов и веществ. За счет их постоянного преобразования мы можем жить и выполнять свои дела. Мы даже не задумываемся о том, что каждую минуту жизни мелкие частицы нашего тела постоянно работают, принося нам пользу. Естественно, задача каждого человека состоит в том, чтобы постоянно пополнять их запасы.
Вещества для жизнедеятельности организма
Основными веществами, которые позволяют нам полноценно функционировать, являются углеводы, белки и жиры. Эти вещества в разных пропорциях находятся практически во всех продуктах, но важно соблюдать баланс этих элементов, так как в противном случае могут начаться проблемы со здоровьем. В данной статье мы рассмотрим функции белков, как они могут давать организму энергию.
Что за вещество – белки?
Это элементы, которые представляют собой цепочки аминокислот. Они обладают большой молекулярной массой, так как одна молекула вмещает в себе несколько аминокислот, которые соединяются полипептидной связью. Одна единица, составляющая белок, представлена какой-либо аминокислотой.Это вещество является незаменимым стройматериалом для организма. Из аминокислот и белков строится практически все в организме: от них зависит обеспечение человека кислородом, так как гемоглобин – это белок. Данное вещество помогает поддерживать иммунитет, участвует в синтезе гормонов, так необходимых для регуляции многих внутренних процессов. На него также возложена энергетическая функция, которая ему не свойственна в полноте. Без него очень сложно организму развиваться и расти. Но и избыток белков не нужен нам. От большого их количества происходят процессы брожения и другие негативные влияния на клетки и органы.
Основные их функции
Белки выполняют много функций, за счет этого организм не испытывает недостаток в регуляции каких-либо процессов, продуцировании новых клеток, иммунной защите и так далее. Рассмотрим их подробнее.
- Каталитическая. Аминокислоты, соединяясь определенным образом, создают ферменты, которые отвечают за скорость определенных реакций в организме. Речь идет не об одном десятке занятых катализацией ферментов. Их у нас порядка нескольких тысяч, и контролируют они до 4000 реакций. Все эти процессы объединяются в одно понятие – обмен веществ. Именно белки определяют, с какой скоростью он будет происходить.
- Структурная – с помощью определенных белков сохраняется форма внутренних клеток, в снаружи мы имеем постоянной формы ногти, волосы и так далее.
- Защитная функция. Она заключается в том, что белки, входящие в состав биологических жидкостей, веществ и клеток, обеспечивают защиту на физическом, химическом, иммунном уровне.
- Регуляторная – есть такие белки, которые не являются стройматериалами клеток, не участвуют в метаболизме, энергетическая функция для них не свойственна, но занимаются они регуляцией процессов в клетках. Они “следят” за передачей генетической информации, активностью и синтезом аминокислот.
- Транспортная функция белков заключается в том, что они переносят важные и полезные вещества для организма с током крови или между клетками.
- Рецепторная – иначе ее могут называть механохимической. Некоторые белки под действием разных сигналов могут менять свою длину, сокращаясь.
- Энергетичекая функция белков – при расщеплении белков высвобождается некоторое количество энергии. Поэтому эти вещества в определенных обстоятельствах служат ее источником.
В каком случае возникает энергетическая функция белков?
Не всегда наше питание сбалансировано так, чтобы белки, жиры и углеводы поступали в наш организм именно в таком количество, как требуется. Поэтому часто возникает недостаток или избыток тех или иных веществ.В случае длительного отсутствия достаточного количества углеводов и жиров на первый план выступает энергетическая функция белков. Организм не перестает потреблять энергию, поэтому именно соединения аминокислот начинают ее поставлять.
Как происходит высвобождение энергии?
Белки – уникальные вещества в организме. Вариаций их строения можт быть тысячи, в зависимости от этого их различают по свойствам. Расход этого вещества в течение длительного времени колоссальный, та же энергетическая функция белков приводит к их расщеплению, следовательно, необходимо их запас постоянно пополнять. В этом нам помогает наш же организм – есть множество клеток, которые синтезируют белок, причем определенного вида и свойства.
Высвобождение энергии происходит с процессом переваривания белков в разных отделах желудочно-кишечного тракта. Окончательное расщепление аминокислот происходит на клеточном уровне.
Преобразование белков в желудке
Энергетическая функция белков, примеры которой мы рассмотрим ниже, начинается с расщепления этих веществ в желудке. Здесь на помощь приходит это же вещество, только другой структуры – фермент пепсин. Он активно действует при определенных условиях (когда рН не выше 5,0 и не ниже 2,0). Посредством преобразования секрета желез желудка получается кислый желудочный сок, что благоприятно сказывается на работе пепсина.
Уже на этом этапе начинается энергетическая функция белков. Пепсин – один из многих ферментов, который способен расщеплять сложный белок коллаген (основной в соединениях ткани мяса). Соединяясь с водой (гидролиз), он образует промежуточные продукты распада и маленькую долю тепла, которое рассеивается по организму, участвуя в энергетическом обмене. Можно сказать, что белки, выполняющие энергетическую функцию, по своей структуре не ферменты, так как последние только помогают эту функцию осуществить другим веществам.
Участие поджелудочной железы в расщеплении белков
Поджелудочная железа не принимает в себе вещества для расщепления. Но она является поставщиком необходимых ферменов, поэтому без нее в переваривании белков трудно обойтись. Она обеспечивает органы пищеварения панкреатическими ферментами: проэластазой, хемотрипсином, трипсином, карбоксиполипептидазой.
Расщепление в кишечнике
Не все белки подвергаются полному распаду в кишечнике, хотя над этим трудится много веществ. Даже в конце переваривания могут оставаться дипептиды и трипептиды. Лишь некоторые аминокислоты выходят из этого отдела ЖКТ единичными.
Трипсин и хемотрипсин помогают белкам преобразоваться в полипептиды, выделяя при нехватке глюкозы в организме тепло, здесь продолжает свое действие энергетическая функция белков. Примеры такого преобразования мы можем наблюдать каждый день, когда употребляем различные вещества в пищу. После распада белков на полипептиды вступает в работу фермент карбоксиполипептаза – она отсоединяет отдельные аминокислоты от конца образовавшихся соединений. Проэластаза переваривает эластические волокна мясных продуктов и других сложных веществ.
Белки, выполняющие энергетическую функцию, проходят последний этап своего расщепления в тонком кишечнике, двенадцатиперстной кишке. Там они подвергаются воздействию ворсинок, которые содержат в себе пептидазы. Эти вещества, взаимодействуя с кишечной жидкостью, заканчивают процесс расщепления полипептидов до маленького числа аминокислот. Далее процесс распределения тепла как энергии от распада белков происходит на клеточном уровне, а конечными продуктами расщепления этих сложных по структуре веществ являются мочевая кислота, мочевина, вода и углекислый газ. Таким образом, мы увидели, где осуществляется энергетическая функция белков. Она не имеет конкретного места локализации аминокислот. Но осуществляется она от начала и до полного расщепления белка.
Клеточная энергия
Энергетическую функцию в клетке выполняют такие органеллы, как митохондрии. На мембране клеток есть молекулы-переносчики, которые перетаскивают продукты распада белков с молекул. В этом случае также выделяется энергия, которая помогает синтезировать молекулы АТФ и взаимодействует с кислородом. Даже на клеточном уровне можно ответить на вопрос о том, какие белки выполняют энергетическую функцию. Это такие вещества, которые не задействованы в ферментативной работе и строительной, так как в строительстве клеток организма принимают участие более уцелевшие во время расщепления полипептиды. Но и они в дальнейшем могут приносить маленькую долю энергии на клеточном уровне с помощью митохондрий и образовавшихся молекул АТФ (уникальный источник энергии для всех процессов в организме).Белки, жиры, углеводы – источники энергии для организма человека
Источниками энергии для организма человека являются белки, жиры, углеводы которые составляют 90% сухого веса всего питания и поставляют 100% энергии. Все три питательных вещества обеспечивают энергию (измеряется в калориях), но количество энергии в 1 грамме вещества различно:
- 4 килокалории в грамме углеводов или белков;
- 9 килокалорий в грамме жира.
В грамме жира в 2 раза больше энергии для организма чем в грамме углеводов и белков.
Эти питательные вещества также различаются в том, как быстро они поставляют энергию и как правильно есть пищу. Углеводы поставляются быстрее, а жиры медленнее.
Белки, жиры, углеводы перевариваются в кишечнике, где они разбиваются на основные единицы:
- углеводы в сахаре
- белки в аминокислотах
- жиры в жирных кислотах и глицерине.
Организм использует эти базовые единицы для создания веществ, которые необходимы для выполнения основных жизненных функций (в том числе другие углеводы, белки, жиры).
Виды углеводов
В зависимости от размера молекулы углеводов могут быть простыми или сложными.
- Простые углеводы: различные виды сахаров, таких, как глюкоза и сахароза (столовый сахар), являются простыми углеводами. Это маленькие молекулы, поэтому они быстро поглощается организмом и являются быстрым источником энергии. Они быстро увеличивают уровень глюкозы в крови (уровень сахара в крови). Фрукты, молочные продукты, мед и кленовый сироп содержат большое количество простых углеводов, которые обеспечивают сладкий вкус в большинстве конфет и пирожных.
- Сложные углеводы: эти углеводы состоят из длинных строк простых углеводов. Поскольку сложные углеводы большие молекулы, они должны быть разбиты на простые молекулы прежде, чем они могут быть поглощены. Таким образом, они, как правило, обеспечивают энергию для организма более медленно, чем простые, но все же быстрее, чем белок или жир. Это потому что они перевариваются медленнее, чем простые углеводы, и меньше шансов быть преобразованными в жир. Они также повышают уровень сахара в крови более медленными темпами и на более низких уровнях, чем простые, но для более длительного времени. Сложные углеводы включают крахмал и белки, которые имеются в продуктах пшеницы (хлеб и макаронные изделия), другие зерновые (рожь и кукуруза), бобы и корнеплоды (картофель).
Углеводы могут быть:
- рафинированными
- нерафинированными
Рафинированные – обработанные, волокна и отруби, а также многие из витаминов и минералов, которые они содержат удалены. Таким образом в процессе метаболизма обрабатываются эти углеводы быстро и обеспечивают мало питания, хотя они содержат примерно столько же калорий. Рафинированные продукты часто обогащенные, то есть витамины и минералы добавляются искусственно, чтобы повысить питательную ценность. Диета с высоким содержанием простых или рафинированных углеводов, как правило, повышают риск ожирения и диабета.
Нерафинированные углеводы из растительных продуктов. В них углеводы содержатся в виде крахмала и клетчатки. Это такие продукты как картофель, цельное зерно, овощи, фрукты.
Если люди потребляют больше углеводов, чем они нуждаются, организм хранит некоторые из этих углеводов в клетках (как гликоген), а остальные преобразует в жир. Гликоген является сложным углеводом для преобразования в энергию и хранится в печени и мышцах. Мышцы используют гликоген энергию в периоды интенсивных упражнений. Количество углеводов, хранящихся как гликоген, может обеспечить калориями на день. Несколько других тканей тела хранят сложные углеводы, которые не могут быть использованы как источник энергии для организма.
Большинство диетологов рекомендуют, что около 50 – 55% от общего числа ежедневных калорий должно состоять из углеводов.
Гликемический индекс углеводов
Гликемический индекс углеводов представляет значение, как быстро их потребление повышает уровень сахара в крови. Диапазон значений от 1 (самое медленное усвоение) до 100 (быстрое, индекс чистой глюкозы). Однако, как быстро на самом деле повышается уровень зависит от продуктов, попадающих в организм.
Гликемический индекс, как правило, ниже для сложных углеводов, чем для простых углеводов, но есть исключения. Например, фруктоза (сахар в плодах) имеет незначительное влияние на уровень сахара в крови.
На гликемический индекс влияет технология обработки и состав продовольствия:
- обработка: обработанные, нарезанные или мелко молотые продукты, как правило, имеют высокий гликемический индекс
- тип крахмала: различные виды крахмала поглощаются по-разному. Крахмал картофельный переваривается и сравнительно быстро впитывается в кровь. Ячмень переваривается и поглощается гораздо медленнее.
- содержание волокна: больше клетчатки пища, тем труднее это переварить. Как следствие сахар более медленно всасывается в кровь
- спелость фруктов: зрелые плоды, больше сахара в нем и чем выше его гликемический индекс
- содержание жира или кислоты: содержит больше жира или кислоты пищи, медленно перевариваются и медленно ее сахара всасываются в кровь
- приготовление пищи: как готовится пища может повлиять на то как быстро всасывается в кровь. Как правило, приготовление пищи или измельчение пищи увеличивает его гликемический индекс, поскольку после процесса приготовления пищи их легче переваривать и усваивать.
- другие факторы: процессы питания организма варьируется от человека к человеку, как быстро влияют углеводы на преобразование в сахар и всасывание. Насколько хорошо пережевана пища и как быстро глотается важно.
Гликемический индекс некоторых продуктов
Продукты | Состав | Индекс |
Фасоль | Семена фасоли | 33 |
Чечевица красная | 27 | |
Соя | 14 | |
Хлеб | Ржаной хлеб | 49 |
Белый | 69 | |
Цельная пшеница | 72 | |
Зерновые культуры | Все отруби | 54 |
Кукурузные хлопья | 83 | |
Овсяная каша | 53 | |
Рис | 90 | |
Измельченные пшеница | 70 | |
Молочные | Молоко, мороженое и йогурт | 34 – 38 |
Фрукты | Яблоко | 38 |
Банан | 61 | |
Мандарин | 43 | |
Апельсиновый сок | 49 | |
Клубника | 32 | |
Зерно | Ячмень | 22 |
Коричневый рис | 66 | |
Белый рис | 72 | |
Макаронные изделия | — | 38 |
Картофель | Мгновенное пюре (через блендер) | 86 |
Пюре | 72 | |
Сладкое пюре | 50 | |
Закуски | Кукурузные чипсы | 72 |
Печенье овсяное | 57 | |
Картофельные чипсы | 56 | |
Сахар | Фруктоза | 22 |
Глюкоза | 100 | |
Мед | 91 | |
Сахар-рафинад | 64 |
Гликемический индекс важный параметр, потому что углеводы повышают сахар в крови, если быстро (с высоким гликемическим индексом) то увеличивается уровень инсулина. Увеличение инсулина может привести к низкому уровню сахара в крови (гипогликемия) и голоду, который, как правило, потребляет лишние калории и набирает вес.
Углеводы с низким гликемическим индексом не сильно увеличивают уровень инсулина. В результате люди чувствуют себя сытыми дольше после еды. Потребление углеводов с низким гликемическим индексом также приводит к более здоровому уровню холестерина и снижает риск ожирения и диабета у людей с диабетом, риск осложнений из-за диабета.
Несмотря на связь между продуктами с низким гликемическим индексом и улучшением здоровья, использование индекса для выбора продуктов не приводит автоматически к здоровому питанию.
Например, высокий гликемический индекс у картофельных чипсов и некоторых конфет не выбор здорового питания, но некоторые пищевые продукты с высоким гликемическим индексом содержат ценные витамины и минералы.
Таким образом, гликемический индекс следует использовать только в качестве общего руководства для выбора продуктов.
Гликемическая нагрузка продуктов
Гликемический индекс показывает, как быстро углеводы в пище всасываются в кровь. Он не включает количество углеводов в пище, которые имеют важное значение.
Гликемическая нагрузка, относительно новый термин, включает гликемический индекс и количество углеводов в пище.
Продукты питания, такие как морковь, бананы, арбуз или хлеб из муки грубого помола, могут иметь высокий гликемический индекс, но содержат сравнительно мало углеводов и, таким образом, у них низкая гликемическая нагрузка продуктов. Такие продукты имеют незначительное влияние на уровень сахара в крови.
Белки в продуктах
Белки состоят из структуры, называемой аминокислоты и образуют сложные образования. Поскольку белки являются сложными молекулами, организм занимает больше времени, чтобы впитать их. В результате они гораздо медленный и долгий источник энергии для организма человека, чем углеводы.
Существуют 20 аминокислот. Организм человека синтезирует некоторые из компонентов в организме, но он не может синтезировать 9 аминокислот — называемые незаменимые аминокислоты. Они должны употребляться в рационе питания. Каждый нуждается в 8 из этих аминокислот: изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валина. Младенцы также нуждаются в 9 аминокислоте – гистидине.
Процент белка, который организм может использовать для синтеза незаменимых аминокислот варьируется. Организм может использовать 100% белка в яйце и высокий процент из белков молока и мяса, но может использовать немного меньше половины белка из большинства овощей и зерновых.
Организм любого млекопитающего нуждается в белке для обслуживания и замены тканей росте. Белок обычно не используется как источник энергии для организма человека. Однако если организм не получает достаточного количества калорий из других питательных веществ или из жира, хранящихся в организме, белок используется для энергии. Если больше белка чем необходимо, организм преобразует белок и сохраняет его компоненты как жир.
Живое тело содержит большое количество белка. Белок, главный строительный блок в организме и является основным компонентом большинства клеток. Например, мышцы, соединительная ткань и кожа все построено из белка.
Взрослые должны съесть около 60 граммов белка в день (1,5 грамм на килограмм веса или 10-15% от общего числа калорий).
Взрослым, которые пытаются развить мышцы нужно немного больше. Детям также необходимо белка больше потому, что они растут.
Жиры
Жиры являются сложными молекулами, состоящими из жирных кислот и глицерина. Организм нуждается в жирах для роста и как источник энергии для организма. Жир также используется для синтеза гормонов и других веществ, необходимых для деятельности органа (например, простагландины).
Жиры медленный источник энергии, но наиболее энергоэффективный вид пищи. Каждый грамм жира поставляет телу около 9 калорий, более чем вдвое больше, чем поставляемые белки или углеводы. Жиры – эффективная форма энергии и тело хранит излишки энергии как жир. Организм откладывает избыточный жир в брюшной полости (сальниковый жир) и под кожу (подкожный жир), чтобы использовать, когда требуется больше энергии. Тело может также изъять избыток жира из кровеносных сосудов и из органов, где он может блокировать поток крови и из поврежденных органов, что часто вызывает серьезные расстройства.
Жирные кислоты
Когда организм нуждается в жирных кислотах, он может сделать (синтезировать) некоторые из них. Некоторые кислоты, называемые незаменимые жирные кислоты, не могут быть синтезированы и должны потребляться в рационе питания.
Незаменимые жирные кислоты составляют около 7% жира, потребляемого в нормальной диете и около 3% от общего количества калорий (около 8 грамм). Они включают линолевую и линоленовую кислоты, которые присутствуют в некоторых растительных маслах. Эйкозапентаеновая и докозагексаеновая кислоты, которые являются жирными кислотами необходимы для развития мозга и могут быть синтезированы из линолевой кислоты. Однако они также присутствуют в некоторых морских рыбных продуктах, которые являются более эффективным источником.
Где находится жир?
Тип жира | Источник |
Мононенасыщенные | Авокадо, оливковое масло Арахисовое масло |
Полиненасыщенные | Рапс, кукуруза, соя, подсолнечник и многие другие жидкие растительные масла |
Насыщенные | Мясо, особенно говядины Жирное молочные продукты, такие как цельное молоко, сливочное масло и сыр Кокосовое и пальмовое масла Искусственно гидрогенизированные растительные масла |
Омега-3 жирные кислоты | Льняное семя Озерная форель и некоторых глубоководных рыб, таких как скумбрия, лосось, сельдь и тунец Зеленые листовые овощи Грецкие орехи |
Омега-6 жирные кислоты | Растительные масла (в том числе подсолнечника, сафлора, кукуруза, хлопковое и соевого масла) Рыбий жир Яичные желтки |
Транс-жиры | Коммерчески запеченные продукты, такие, как печенье, крекеры и пончики Картофель фри и другие жареные продукты Маргарин Картофельные чипсы |
Линолевая и арахидоновая кислоты состоят из омега-6 жирных кислот.
Линоленовой кислота, эйкозапентаеновая и докозагексаеновая кислоты представляют омега-3 жирные кислоты.
Питание, богатое омега-3 жирными кислотами может снизить риск атеросклероза (включая заболевание коронарной артерии). Озерная форель и некоторые глубоководные рыбы содержат большое количество Омега-3 жирных кислот.
Необходимо потреблять достаточное количество омега-6 жирных кислот
Виды жиров
Существуют различные виды жиров
- мононенасыщенные
- полиненасыщенные
- насыщенные
Употребление насыщенных жиров увеличивает уровень холестерина и риск атеросклероза. Продукты, полученные от животных обычно содержат насыщенные жиры, которые, как правило, твердые при комнатной температуре. Жиры, полученных из растений обычно содержат мононенасыщенные или полиненасыщенные жирные кислоты, которые, как правило, жидкие при комнатной температуре. Исключением являются пальмовое и кокосовое масло. Они содержат больше насыщенных жиров, чем другие растительные масла.
Транс-жиры (транс-жирные кислоты) – другая категория жира. Они искусственные и формируются путем добавления атомов водорода (гидрирования) мононенасыщенных или полиненасыщенных жирных кислот. Жиры могут полностью или частично быть гидрогенизированные (насыщенные атомами воды). Основным источником питания транс-жиров является частично гидрогенизированные растительные масла в коммерчески подготовленных продуктах. Потребление транс-жиров может негативно повлиять на уровень холестерина в организме и может способствовать риску атеросклероза.
Жиры в питании
Врачи обычно рекомендуют определенные жиры в питании
- жир должен быть ограничен и составлять менее 30% от общего количества ежедневных калорий (или менее 90 грамм в день)
- насыщенные жиры должны употребляться ограниченно до 10%.
Ликвидация транс-жиров в рационе рекомендуется. Людям с высоким уровнем холестерина может потребоваться сократить общее потребление жиров в питании.
Когда потребление жиров сокращается до 10% или меньше от общего количества ежедневных калорий, уровень холестерина резко уменьшается.
Углеводы, белки и жиры представляют основные источники энергии для человека необходимой для жизнедеятельности и их качество имеет важное значения для здоровья.
белки, жиры и углеводы, полезные вещества, процессы и виды энергии
Основными источниками энергии для организма являются углеводы, белки, минеральные соли, жиры, витамины. Они обеспечивают его нормальную деятельность, позволяют организму функционировать без особых проблем. Питательные вещества – это источники энергии в организме человека. Кроме того, они выступают в качестве строительного материала, способствуют росту и воспроизводству новых клеток, появляющихся на месте отмирающих. В том виде, в котором они употребляются в пищу, их невозможно всосать и использовать организмом. Только вода, а также витамины и минеральные соли усваиваются и всасываются в том виде, в котором они поступают.
Основными источниками энергии для организма являются белки, углеводы, жиры. В пищеварительном тракте они подвергаются не только физическим воздействиям (перетираются и измельчаются), но и химическим превращениям, происходящим под воздействием ферментов, которые находятся в соке специальных пищеварительных желез.
Строение белков
В растениях и животных есть определенное вещество, являющееся основой жизни. Этим соединением является протеин. Обнаружены белковые тела были биохимиком Жераром Мюльдером в 1838 году. Именно им была сформулирована теория протеина. Слово «протеин» с греческого языка означает «занимающий первое место». Примерно половину сухого веса любого организма составляют именно белки. У вирусов такое содержание колеблется в диапазоне 45-95 процентов.
Рассуждая о том, что является главным источником энергии в организме, нельзя оставить без внимания белковые молекулы. Они занимают особое место по биологическим функциям и значению.
Функции и расположение в организме
Около 30 % белковых соединений располагается в мышцах, порядка 20 % обнаружено в сухожилиях и в костях, а 10 % содержится в коже. Максимально значимыми для организмов являются ферменты, управляющие обменными химическими процессами: перевариванием пищи, активностью желез внутренней секреции, работой мозга, мышечной деятельностью. Даже в небольших бактериях содержатся сотни ферментов.
Протеины – это обязательная часть живых клеток. В них содержится водород, углерод, азот, сера, кислород, а в некоторых есть и фосфор. Обязательным химическим элементом, содержащимся в белковых молекулах, является азот. Именно поэтому эти органические вещества называют азотсодержащими соединениями.
Свойства и превращение белков в организме
Попадая в пищеварительный тракт, они расщепляются на аминокислоты, которые всасываются в кровь и используются для синтеза специфичного для организма пептида, затем окисляются до воды и углекислого газа. При повышении температуры происходит свертывание белковой молекулы. Известны такие молекулы, которые способны растворяться в воде только при нагревании. К примеру, такими свойствами обладает желатин.
После поглощения пища сначала оказывается в ротовой полости, потом она движется по пищеводу, попадает в желудок. В нем находится кислая реакция среды, которая обеспечивается соляной кислотой. В желудочном соке есть фермент пепсин, который расщепляет белковые молекулы на альбумозы и пептоны. Это вещество активно только в кислой среде. Пища, которая поступила в желудок, способна задерживаться в нем 3-10 часов, в зависимости от ее агрегатного состояния и характера. Поджелудочный сок обладает щелочной реакцией, в нем есть ферменты, способные расщеплять жиры, углеводы, белки.
Среди его основных ферментов выделяют трипсин, который в соке поджелудочной железы располагается в виде трипсиногена. Он не способен расщеплять белки, но при соприкосновении с кишечным соком превращается в активное вещество – энтерокиназу. Трипсин расщепляет белковые соединения до аминокислот. Заканчивается переработка пищи в тонкой кишке. Если в двенадцатиперстное кишке и в желудке жиры, углеводы, белки почти полностью распадаются, то в тонкой кишке происходит полное расщепление питательных веществ, всасывание в кровь продуктов реакции. Осуществляется процесс через капилляры, каждый из которых подходит к ворсинкам, располагающимся на стенке тонкой кишки.
Обмен белков
После того как белок полностью распадется на аминокислоты в пищеварительном тракте, они всасываются в кровь. Также в нее попадает и незначительное количество полипептидов. Из аминокислотных остатков в организме живого существа синтезируется специфичный белок, в котором нуждается человек или животное. Процесс образования новых белковых молекул протекает в живом организме непрерывно, поскольку отмирающие клетки кожи, крови, кишечника, слизистой оболочки удаляются, а на их месте образуются молодые клетки.
Для того чтобы осуществлялся синтез белков, необходимо, чтобы они вместе с пищей поступали в пищеварительный тракт. Если полипептид вводится в кровь, минуя пищеварительный тракт, человеческий организм не имеет возможности его использовать. Подобный процесс может негативно отражаться на состоянии человеческого организма, вызывать многочисленные осложнения: повышение температуры, паралич дыхания, сбой сердечной деятельности, общие судороги.
Белки нельзя заменить иными пищевыми веществами, поскольку для их синтеза внутри организма необходимы аминокислоты. Недостаточное количество этих веществ приводит к задержке либо приостановлению роста.
Сахариды
Начнем с того, что углеводы – главный источник энергии организма. Они представляют собой одну из главных групп органических соединений, в которых нуждается наш организм. Этот источник энергии живых организмов является первичным продуктом фотосинтеза. Содержание в живой растительной клетке углеводов может колебаться в диапазоне 1-2 процентов, а в некоторых ситуациях этот показатель достигает 85-90 процентов.
Основными источниками энергии живых организмов являются моносахариды: глюкоза, фруктоза, рибоза.
В составе углеводов есть атомы кислорода, водорода, углерода. К примеру, глюкоза – источник энергии в организме, имеет формулу С6Н12О6. Существует подразделение всех углеводов (по строению) на простые и сложные соединения: моно- и полисахариды. По количеству углеродных атомов моносахариды делят на несколько групп:
- триозы;
- тетрозы;
- пентозы;
- гексозы;
- гептозы.
Моносахариды, которые имеют в составе пять и более углеродных атомов, при растворении в воде могут образовывать кольцевую структуру.
Основным источником энергии в организме является глюкоза. Дезоксирибоза и рибоза являются углеводами, имеющими особое значение для нуклеиновых кислот и АТФ.
Глюкоза – это главный источник энергии в организме. С процессами превращения моносахаридов напрямую связан биосинтез многих органических соединений, а также процесс выведения из него ядовитых соединений, которые попадают извне либо образуются в результате распада белковых молекул.
Отличительные особенности дисахаридов
Моносахарид и дисахарид – это основной источник энергии для организма. При объединении моносахаридов происходит отщепление, а продуктом взаимодействия выступает дисахарид.
Среди типичных представителей данной группы можно отметить сахарозу (тростниковый сахар), мальтозу (солодовый сахар), лактозу (молочный сахар).
Такой источник энергии для организма, как дисахариды, заслуживает детального изучения. Они отлично растворяются в воде, обладают сладким вкусом. Чрезмерное употребление сахарозы приводит к появлению серьезных сбоев в организме, поэтому так важно соблюдать нормы.
Полисахариды
Отличным источником энергии для организма служат такие вещества, как целлюлоза, гликоген, крахмал.
В первую очередь любой из них можно рассматривать как источник энергии для человеческого организма. В случае их ферментативного расщепления и распада происходит выделение большого количества энергии, используемой живой клеткой.
Этот источник энергии для организма выполняет и иные важные функции. Например, хитин, целлюлоза применяются в качестве строительного материала. Полисахариды отлично подходят организму в качестве запасных соединений, поскольку они не растворяются в воде, не оказывают химического и осмотического действия на клетку. Подобные свойства позволяют им сохраняться длительное время в живой клетке. В обезвоженном виде полисахариды способны увеличивать массу запасаемых продуктов благодаря экономии объема.
Такой источник энергии для организма способен противостоять болезнетворным бактериям, попадающим в организм вместе с пищей. В случае необходимости при гидролизе происходит превращение запасных полисахаридов в простые сахара.
Обмен углеводов
Как ведет себя главный источник энергии в организме? Углеводы поступают в большей степени в виде полисахаридов, к примеру, в виде крахмала. В результате гидролиза из него образуется глюкоза. Моносахарид всасывается в кровь, благодаря нескольким промежуточным реакциям он расщепляется на углекислый газ и воду. После окончательного окисления происходит высвобождение энергии, которую использует организм.
Процесс расщепления солодового сахара и крахмала протекает непосредственно в полости рта, в качестве катализатора реакции выступает фермент птиалин. В тонких кишках углеводы распадаются до моносахаридов. В кровь они всасываются в основном в виде глюкозы. Процесс протекает в верхних отделах кишечника, а вот в нижних углеводов почти нет. Вместе с кровью сахариды попадают в воротную вену, доходят до печени. В том случае, когда концентрация сахара в человеческой крови составляет 0,1 %, углеводы проходят через печень, оказываются в общем кровотоке.
Необходимо поддерживать постоянное количество сахара в крови около 0,1 %. При избыточном попадании в кровь сахаридов, излишки накапливаются в печени. Подобный процесс сопровождается резким падением сахара в крови.
Изменение уровня сахара в организме
Если в пище присутствует крахмал, это не приводит к масштабным изменениям сахара в крови, поскольку процесс гидролиза полисахарида протекает достаточно долго. Если доза сахара оставляет порядка 15-200 граммов, наблюдается резкое повышение его содержания в крови. Этот процесс называют алиментарной или пищевой гипергликемией. Избыточное количество сахара выводится почками, поэтому в моче содержится глюкоза.
Из организма почки начинают выводить сахар в том случае, если его уровень в крови достигает диапазона 0,15-0,18 %. Подобное явление возникает при единовременном употреблении существенного количества сахара, достаточно быстро проходит, не приводя к серьезным нарушениям обменных процессов в организме.
Если нарушается внутрисекреторная работа поджелудочной железы, возникает такое заболевание, как сахарный диабет. Оно сопровождается существенным увеличением количества сахара в крови, что приводит к потере печенью способности удерживать глюкозу, в итоге сахар выводится с мочой из организма.
Существенное количество гликогена может откладываться в мышцах, здесь он востребован при осуществлении химических реакций, происходящих в ходе сокращений мышц.
О важности глюкозы
Значение глюкозы для живого организма не ограничивается только энергетической функцией. Потребность в глюкозе возрастает при выполнении тяжелой физической работы. Удовлетворяется такая потребность путем расщепления в печени гликогена на глюкозу, которая поступает в кровь.
Данный моносахарид есть и в составе протоплазмы клеток, поэтому требуется для формирования новых клеток, особенно актуальна глюкоза в процессе роста. Особое значение имеет данный моносахарид для полноценной деятельности центральной нервной системы. Как только концентрация сахара в крови понижается до показателя 0,04 %, возникают судороги, человек теряет сознание. Это является прямым подтверждением того, что понижение сахара в крови вызывает мгновенное нарушение деятельности центральной нервной системы. Если пациенту вводят глюкозу в кровь либо предлагают сладкую пищу, все нарушения пропадают. При длительном понижении сахара в крови развивается гипогликемия. Она приводит к серьезным нарушениям деятельности организма, которые могу вызвать его смерть.
Коротко о жирах
В качестве еще одного источника энергии для живого организма можно рассматривать жиры. В их составе присутствуют углерод, кислород, водород. Жиры имеют сложное химическое строение, представляют собой соединения многоатомного спирта глицерина и жирных карбоновых кислот.
В ходе пищеварительных процессов происходит расщепление жира на составные части, из которых он был получен. Именно жиры являются составной частью протоплазмы, содержатся в тканях, органах, клетках живого организма. Они по праву считаются отличным источником энергии. Расщепление этих органических соединений начинается в желудке. В желудочном соке содержится липаза, которая превращает молекулы жира в глицерин и карбоновую кислоту.
Глицерин отлично всасывается, так как имеет хорошую растворимость в воде. Для растворения кислот используется желчь. Под ее влиянием эффективность воздействия на жир липазы возрастает до 15-20 раз. Из желудка пища движется в двенадцатиперстную кишку, где под действием сока происходит ее дальнейшее расщепление до продуктов, которые способны всасываться в лимфу и кровь.
Далее пищевая кашица движется по пищеварительному тракту, попадает в тонкий кишечник. Здесь происходит ее полное расщепление под влиянием кишечного сока, а также всасывание. В отличие от продуктов расщепления белков и углеводов, вещества, получаемые при гидролизе жиров, всасываются в лимфу. Глицерин и мыла после прохождения через клетки слизистой оболочки кишечника опять соединяются, формируют жир.
Подводя общий итог, отметим, что основными источниками энергии для организма человека и животных выступают белки, жиры, углеводы. Именно благодаря углеводному, белковому обмену, сопровождающемуся образованием дополнительной энергии, функционирует живой организм. Поэтому не стоит долго сидеть на диетах, ограничивая себя в каком-то конкретном микроэлементе или веществе, иначе это может отрицательно сказаться на здоровье и самочувствии.
белки, жиры и углеводы, полезные вещества, процессы и виды энергии
Основными источниками энергии для организма являются углеводы, белки, минеральные соли, жиры, витамины. Они обеспечивают его нормальную деятельность, позволяют организму функционировать без особых проблем. Питательные вещества – это источники энергии в организме человека. Кроме того, они выступают в качестве строительного материала, способствуют росту и воспроизводству новых клеток, появляющихся на месте отмирающих. В том виде, в котором они употребляются в пищу, их невозможно всосать и использовать организмом. Только вода, а также витамины и минеральные соли усваиваются и всасываются в том виде, в котором они поступают.
Основными источниками энергии для организма являются белки, углеводы, жиры. В пищеварительном тракте они подвергаются не только физическим воздействиям (перетираются и измельчаются), но и химическим превращениям, происходящим под воздействием ферментов, которые находятся в соке специальных пищеварительных желез.
Строение белков
В растениях и животных есть определенное вещество, являющееся основой жизни. Этим соединением является протеин. Обнаружены белковые тела были биохимиком Жераром Мюльдером в 1838 году. Именно им была сформулирована теория протеина. Слово «протеин» с греческого языка означает «занимающий первое место». Примерно половину сухого веса любого организма составляют именно белки. У вирусов такое содержание колеблется в диапазоне 45-95 процентов.
Рассуждая о том, что является главным источником энергии в организме, нельзя оставить без внимания белковые молекулы. Они занимают особое место по биологическим функциям и значению.
Функции и расположение в организме
Около 30 % белковых соединений располагается в мышцах, порядка 20 % обнаружено в сухожилиях и в костях, а 10 % содержится в коже. Максимально значимыми для организмов являются ферменты, управляющие обменными химическими процессами: перевариванием пищи, активностью желез внутренней секреции, работой мозга, мышечной деятельностью. Даже в небольших бактериях содержатся сотни ферментов.
Протеины – это обязательная часть живых клеток. В них содержится водород, углерод, азот, сера, кислород, а в некоторых есть и фосфор. Обязательным химическим элементом, содержащимся в белковых молекулах, является азот. Именно поэтому эти органические вещества называют азотсодержащими соединениями.
Свойства и превращение белков в организме
Попадая в пищеварительный тракт, они расщепляются на аминокислоты, которые всасываются в кровь и используются для синтеза специфичного для организма пептида, затем окисляются до воды и углекислого газа. При повышении температуры происходит свертывание белковой молекулы. Известны такие молекулы, которые способны растворяться в воде только при нагревании. К примеру, такими свойствами обладает желатин.
После поглощения пища сначала оказывается в ротовой полости, потом она движется по пищеводу, попадает в желудок. В нем находится кислая реакция среды, которая обеспечивается соляной кислотой. В желудочном соке есть фермент пепсин, который расщепляет белковые молекулы на альбумозы и пептоны. Это вещество активно только в кислой среде. Пища, которая поступила в желудок, способна задерживаться в нем 3-10 часов, в зависимости от ее агрегатного состояния и характера. Поджелудочный сок обладает щелочной реакцией, в нем есть ферменты, способные расщеплять жиры, углеводы, белки.
Среди его основных ферментов выделяют трипсин, который в соке поджелудочной железы располагается в виде трипсиногена. Он не способен расщеплять белки, но при соприкосновении с кишечным соком превращается в активное вещество – энтерокиназу. Трипсин расщепляет белковые соединения до аминокислот. Заканчивается переработка пищи в тонкой кишке. Если в двенадцатиперстное кишке и в желудке жиры, углеводы, белки почти полностью распадаются, то в тонкой кишке происходит полное расщепление питательных веществ, всасывание в кровь продуктов реакции. Осуществляется процесс через капилляры, каждый из которых подходит к ворсинкам, располагающимся на стенке тонкой кишки.
Обмен белков
После того как белок полностью распадется на аминокислоты в пищеварительном тракте, они всасываются в кровь. Также в нее попадает и незначительное количество полипептидов. Из аминокислотных остатков в организме живого существа синтезируется специфичный белок, в котором нуждается человек или животное. Процесс образования новых белковых молекул протекает в живом организме непрерывно, поскольку отмирающие клетки кожи, крови, кишечника, слизистой оболочки удаляются, а на их месте образуются молодые клетки.
Для того чтобы осуществлялся синтез белков, необходимо, чтобы они вместе с пищей поступали в пищеварительный тракт. Если полипептид вводится в кровь, минуя пищеварительный тракт, человеческий организм не имеет возможности его использовать. Подобный процесс может негативно отражаться на состоянии человеческого организма, вызывать многочисленные осложнения: повышение температуры, паралич дыхания, сбой сердечной деятельности, общие судороги.
Белки нельзя заменить иными пищевыми веществами, поскольку для их синтеза внутри организма необходимы аминокислоты. Недостаточное количество этих веществ приводит к задержке либо приостановлению роста.
Сахариды
Начнем с того, что углеводы – главный источник энергии организма. Они представляют собой одну из главных групп органических соединений, в которых нуждается наш организм. Этот источник энергии живых организмов является первичным продуктом фотосинтеза. Содержание в живой растительной клетке углеводов может колебаться в диапазоне 1-2 процентов, а в некоторых ситуациях этот показатель достигает 85-90 процентов.
Основными источниками энергии живых организмов являются моносахариды: глюкоза, фруктоза, рибоза.
В составе углеводов есть атомы кислорода, водорода, углерода. К примеру, глюкоза – источник энергии в организме, имеет формулу С6Н12О6. Существует подразделение всех углеводов (по строению) на простые и сложные соединения: моно- и полисахариды. По количеству углеродных атомов моносахариды делят на несколько групп:
- триозы;
- тетрозы;
- пентозы;
- гексозы;
- гептозы.
Моносахариды, которые имеют в составе пять и более углеродных атомов, при растворении в воде могут образовывать кольцевую структуру.
Основным источником энергии в организме является глюкоза. Дезоксирибоза и рибоза являются углеводами, имеющими особое значение для нуклеиновых кислот и АТФ.
Глюкоза – это главный источник энергии в организме. С процессами превращения моносахаридов напрямую связан биосинтез многих органических соединений, а также процесс выведения из него ядовитых соединений, которые попадают извне либо образуются в результате распада белковых молекул.
Отличительные особенности дисахаридов
Моносахарид и дисахарид – это основной источник энергии для организма. При объединении моносахаридов происходит отщепление, а продуктом взаимодействия выступает дисахарид.
Среди типичных представителей данной группы можно отметить сахарозу (тростниковый сахар), мальтозу (солодовый сахар), лактозу (молочный сахар).
Такой источник энергии для организма, как дисахариды, заслуживает детального изучения. Они отлично растворяются в воде, обладают сладким вкусом. Чрезмерное употребление сахарозы приводит к появлению серьезных сбоев в организме, поэтому так важно соблюдать нормы.
Полисахариды
Отличным источником энергии для организма служат такие вещества, как целлюлоза, гликоген, крахмал.
В первую очередь любой из них можно рассматривать как источник энергии для человеческого организма. В случае их ферментативного расщепления и распада происходит выделение большого количества энергии, используемой живой клеткой.
Этот источник энергии для организма выполняет и иные важные функции. Например, хитин, целлюлоза применяются в качестве строительного материала. Полисахариды отлично подходят организму в качестве запасных соединений, поскольку они не растворяются в воде, не оказывают химического и осмотического действия на клетку. Подобные свойства позволяют им сохраняться длительное время в живой клетке. В обезвоженном виде полисахариды способны увеличивать массу запасаемых продуктов благодаря экономии объема.
Такой источник энергии для организма способен противостоять болезнетворным бактериям, попадающим в организм вместе с пищей. В случае необходимости при гидролизе происходит превращение запасных полисахаридов в простые сахара.
Обмен углеводов
Как ведет себя главный источник энергии в организме? Углеводы поступают в большей степени в виде полисахаридов, к примеру, в виде крахмала. В результате гидролиза из него образуется глюкоза. Моносахарид всасывается в кровь, благодаря нескольким промежуточным реакциям он расщепляется на углекислый газ и воду. После окончательного окисления происходит высвобождение энергии, которую использует организм.
Процесс расщепления солодового сахара и крахмала протекает непосредственно в полости рта, в качестве катализатора реакции выступает фермент птиалин. В тонких кишках углеводы распадаются до моносахаридов. В кровь они всасываются в основном в виде глюкозы. Процесс протекает в верхних отделах кишечника, а вот в нижних углеводов почти нет. Вместе с кровью сахариды попадают в воротную вену, доходят до печени. В том случае, когда концентрация сахара в человеческой крови составляет 0,1 %, углеводы проходят через печень, оказываются в общем кровотоке.
Необходимо поддерживать постоянное количество сахара в крови около 0,1 %. При избыточном попадании в кровь сахаридов, излишки накапливаются в печени. Подобный процесс сопровождается резким падением сахара в крови.
Изменение уровня сахара в организме
Если в пище присутствует крахмал, это не приводит к масштабным изменениям сахара в крови, поскольку процесс гидролиза полисахарида протекает достаточно долго. Если доза сахара оставляет порядка 15-200 граммов, наблюдается резкое повышение его содержания в крови. Этот процесс называют алиментарной или пищевой гипергликемией. Избыточное количество сахара выводится почками, поэтому в моче содержится глюкоза.
Из организма почки начинают выводить сахар в том случае, если его уровень в крови достигает диапазона 0,15-0,18 %. Подобное явление возникает при единовременном употреблении существенного количества сахара, достаточно быстро проходит, не приводя к серьезным нарушениям обменных процессов в организме.
Если нарушается внутрисекреторная работа поджелудочной железы, возникает такое заболевание, как сахарный диабет. Оно сопровождается существенным увеличением количества сахара в крови, что приводит к потере печенью способности удерживать глюкозу, в итоге сахар выводится с мочой из организма.
Существенное количество гликогена может откладываться в мышцах, здесь он востребован при осуществлении химических реакций, происходящих в ходе сокращений мышц.
О важности глюкозы
Значение глюкозы для живого организма не ограничивается только энергетической функцией. Потребность в глюкозе возрастает при выполнении тяжелой физической работы. Удовлетворяется такая потребность путем расщепления в печени гликогена на глюкозу, которая поступает в кровь.
Данный моносахарид есть и в составе протоплазмы клеток, поэтому требуется для формирования новых клеток, особенно актуальна глюкоза в процессе роста. Особое значение имеет данный моносахарид для полноценной деятельности центральной нервной системы. Как только концентрация сахара в крови понижается до показателя 0,04 %, возникают судороги, человек теряет сознание. Это является прямым подтверждением того, что понижение сахара в крови вызывает мгновенное нарушение деятельности центральной нервной системы. Если пациенту вводят глюкозу в кровь либо предлагают сладкую пищу, все нарушения пропадают. При длительном понижении сахара в крови развивается гипогликемия. Она приводит к серьезным нарушениям деятельности организма, которые могу вызвать его смерть.
Коротко о жирах
В качестве еще одного источника энергии для живого организма можно рассматривать жиры. В их составе присутствуют углерод, кислород, водород. Жиры имеют сложное химическое строение, представляют собой соединения многоатомного спирта глицерина и жирных карбоновых кислот.
В ходе пищеварительных процессов происходит расщепление жира на составные части, из которых он был получен. Именно жиры являются составной частью протоплазмы, содержатся в тканях, органах, клетках живого организма. Они по праву считаются отличным источником энергии. Расщепление этих органических соединений начинается в желудке. В желудочном соке содержится липаза, которая превращает молекулы жира в глицерин и карбоновую кислоту.
Глицерин отлично всасывается, так как имеет хорошую растворимость в воде. Для растворения кислот используется желчь. Под ее влиянием эффективность воздействия на жир липазы возрастает до 15-20 раз. Из желудка пища движется в двенадцатиперстную кишку, где под действием сока происходит ее дальнейшее расщепление до продуктов, которые способны всасываться в лимфу и кровь.
Далее пищевая кашица движется по пищеварительному тракту, попадает в тонкий кишечник. Здесь происходит ее полное расщепление под влиянием кишечного сока, а также всасывание. В отличие от продуктов расщепления белков и углеводов, вещества, получаемые при гидролизе жиров, всасываются в лимфу. Глицерин и мыла после прохождения через клетки слизистой оболочки кишечника опять соединяются, формируют жир.
Подводя общий итог, отметим, что основными источниками энергии для организма человека и животных выступают белки, жиры, углеводы. Именно благодаря углеводному, белковому обмену, сопровождающемуся образованием дополнительной энергии, функционирует живой организм. Поэтому не стоит долго сидеть на диетах, ограничивая себя в каком-то конкретном микроэлементе или веществе, иначе это может отрицательно сказаться на здоровье и самочувствии.
Энергетическая функция белков: примеры
Наш организм состоит из различных микроэлементов и веществ. За счет их постоянного преобразования мы можем жить и выполнять свои дела. Мы даже не задумываемся о том, что каждую минуту жизни мелкие частицы нашего тела постоянно работают, принося нам пользу. Естественно, задача каждого человека состоит в том, чтобы постоянно пополнять их запасы.
Вещества для жизнедеятельности организма
Основными веществами, которые позволяют нам полноценно функционировать, являются углеводы, белки и жиры. Эти вещества в разных пропорциях находятся практически во всех продуктах, но важно соблюдать баланс этих элементов, так как в противном случае могут начаться проблемы со здоровьем. В данной статье мы рассмотрим функции белков, как они могут давать организму энергию.
Что за вещество – белки?
Это элементы, которые представляют собой цепочки аминокислот. Они обладают большой молекулярной массой, так как одна молекула вмещает в себе несколько аминокислот, которые соединяются полипептидной связью. Одна единица, составляющая белок, представлена какой-либо аминокислотой.
Это вещество является незаменимым стройматериалом для организма. Из аминокислот и белков строится практически все в организме: от них зависит обеспечение человека кислородом, так как гемоглобин – это белок. Данное вещество помогает поддерживать иммунитет, участвует в синтезе гормонов, так необходимых для регуляции многих внутренних процессов. На него также возложена энергетическая функция, которая ему не свойственна в полноте. Без него очень сложно организму развиваться и расти. Но и избыток белков не нужен нам. От большого их количества происходят процессы брожения и другие негативные влияния на клетки и органы.
Основные их функции
Белки выполняют много функций, за счет этого организм не испытывает недостаток в регуляции каких-либо процессов, продуцировании новых клеток, иммунной защите и так далее. Рассмотрим их подробнее.
- Каталитическая. Аминокислоты, соединяясь определенным образом, создают ферменты, которые отвечают за скорость определенных реакций в организме. Речь идет не об одном десятке занятых катализацией ферментов. Их у нас порядка нескольких тысяч, и контролируют они до 4000 реакций. Все эти процессы объединяются в одно понятие – обмен веществ. Именно белки определяют, с какой скоростью он будет происходить.
- Структурная – с помощью определенных белков сохраняется форма внутренних клеток, в снаружи мы имеем постоянной формы ногти, волосы и так далее.
- Защитная функция. Она заключается в том, что белки, входящие в состав биологических жидкостей, веществ и клеток, обеспечивают защиту на физическом, химическом, иммунном уровне.
- Регуляторная – есть такие белки, которые не являются стройматериалами клеток, не участвуют в метаболизме, энергетическая функция для них не свойственна, но занимаются они регуляцией процессов в клетках. Они “следят” за передачей генетической информации, активностью и синтезом аминокислот.
- Транспортная функция белков заключается в том, что они переносят важные и полезные вещества для организма с током крови или между клетками.
- Рецепторная – иначе ее могут называть механохимической. Некоторые белки под действием разных сигналов могут менять свою длину, сокращаясь.
- Энергетичекая функция белков – при расщеплении белков высвобождается некоторое количество энергии. Поэтому эти вещества в определенных обстоятельствах служат ее источником.
В каком случае возникает энергетическая функция белков?
Не всегда наше питание сбалансировано так, чтобы белки, жиры и углеводы поступали в наш организм именно в таком количество, как требуется. Поэтому часто возникает недостаток или избыток тех или иных веществ.
В случае длительного отсутствия достаточного количества углеводов и жиров на первый план выступает энергетическая функция белков. Организм не перестает потреблять энергию, поэтому именно соединения аминокислот начинают ее поставлять.
Как происходит высвобождение энергии?
Белки – уникальные вещества в организме. Вариаций их строения можт быть тысячи, в зависимости от этого их различают по свойствам. Расход этого вещества в течение длительного времени колоссальный, та же энергетическая функция белков приводит к их расщеплению, следовательно, необходимо их запас постоянно пополнять. В этом нам помогает наш же организм – есть множество клеток, которые синтезируют белок, причем определенного вида и свойства.
Высвобождение энергии происходит с процессом переваривания белков в разных отделах желудочно-кишечного тракта. Окончательное расщепление аминокислот происходит на клеточном уровне.
Преобразование белков в желудке
Энергетическая функция белков, примеры которой мы рассмотрим ниже, начинается с расщепления этих веществ в желудке. Здесь на помощь приходит это же вещество, только другой структуры – фермент пепсин. Он активно действует при определенных условиях (когда рН не выше 5,0 и не ниже 2,0). Посредством преобразования секрета желез желудка получается кислый желудочный сок, что благоприятно сказывается на работе пепсина.
Уже на этом этапе начинается энергетическая функция белков. Пепсин – один из многих ферментов, который способен расщеплять сложный белок коллаген (основной в соединениях ткани мяса). Соединяясь с водой (гидролиз), он образует промежуточные продукты распада и маленькую долю тепла, которое рассеивается по организму, участвуя в энергетическом обмене. Можно сказать, что белки, выполняющие энергетическую функцию, по своей структуре не ферменты, так как последние только помогают эту функцию осуществить другим веществам.
Участие поджелудочной железы в расщеплении белков
Поджелудочная железа не принимает в себе вещества для расщепления. Но она является поставщиком необходимых ферменов, поэтому без нее в переваривании белков трудно обойтись. Она обеспечивает органы пищеварения панкреатическими ферментами: проэластазой, хемотрипсином, трипсином, карбоксиполипептидазой.
Расщепление в кишечнике
Не все белки подвергаются полному распаду в кишечнике, хотя над этим трудится много веществ. Даже в конце переваривания могут оставаться дипептиды и трипептиды. Лишь некоторые аминокислоты выходят из этого отдела ЖКТ единичными.
Трипсин и хемотрипсин помогают белкам преобразоваться в полипептиды, выделяя при нехватке глюкозы в организме тепло, здесь продолжает свое действие энергетическая функция белков. Примеры такого преобразования мы можем наблюдать каждый день, когда употребляем различные вещества в пищу. После распада белков на полипептиды вступает в работу фермент карбоксиполипептаза – она отсоединяет отдельные аминокислоты от конца образовавшихся соединений. Проэластаза переваривает эластические волокна мясных продуктов и других сложных веществ.
Белки, выполняющие энергетическую функцию, проходят последний этап своего расщепления в тонком кишечнике, двенадцатиперстной кишке. Там они подвергаются воздействию ворсинок, которые содержат в себе пептидазы. Эти вещества, взаимодействуя с кишечной жидкостью, заканчивают процесс расщепления полипептидов до маленького числа аминокислот. Далее процесс распределения тепла как энергии от распада белков происходит на клеточном уровне, а конечными продуктами расщепления этих сложных по структуре веществ являются мочевая кислота, мочевина, вода и углекислый газ. Таким образом, мы увидели, где осуществляется энергетическая функция белков. Она не имеет конкретного места локализации аминокислот. Но осуществляется она от начала и до полного расщепления белка.
Клеточная энергия
Энергетическую функцию в клетке выполняют такие органеллы, как митохондрии. На мембране клеток есть молекулы-переносчики, которые перетаскивают продукты распада белков с молекул. В этом случае также выделяется энергия, которая помогает синтезировать молекулы АТФ и взаимодействует с кислородом. Даже на клеточном уровне можно ответить на вопрос о том, какие белки выполняют энергетическую функцию. Это такие вещества, которые не задействованы в ферментативной работе и строительной, так как в строительстве клеток организма принимают участие более уцелевшие во время расщепления полипептиды. Но и они в дальнейшем могут приносить маленькую долю энергии на клеточном уровне с помощью митохондрий и образовавшихся молекул АТФ (уникальный источник энергии для всех процессов в организме).
Главная страница / рассылка / Белок дает силу :: Выпуск 22 Здравствуйте. Наступила осень, и это значит, что пора готовится к Новому году. Ведь все хотят выглядеть красиво, но если вы вспомните об этом в декабре, то боюсь, что получится “как в прошлый раз”. Для того, чтобы было легче худеть ваш рацион должен быть сбалансирован, поэтому наш сегодняшний выпуск посвящен белку. – Значение белка для снижения веса – Удовлетворение от еды – Запасы энергии – Практические пищевые рекомендации Белок – источник энергии и многого другого В нашем мире быстрого и удобного питания нелегко получить высококачественный
белок. Но без него у вас могут начать выпадать волосы, крошиться ногти,
а мышцы начнут деградировать и превращаться в кисель. Вам вряд ли удастся
достичь идеального размера и при этом сохранить энергию без постоянного
поступления в организм высококачественного белка. Белки снабжают энергией и многим другим Они являются источником энергии, из них строятся гормоны, антитела,
ферменты и ткани организма. Организм не может существовать без определенных
незаменимых аминокислот, получаемых из белка. К тому же вырабатывать их
самостоятельно он не способен. Нужен постоянный приток аминокислот в рацион.
Существуют заменимые аминокислоты, необходимые организму, которые он синтезирует
сам. Заменимые и незаменимые аминокислоты Аминокислоты, получаемые из потребляемого нами белка, влияют на многие
процессы, происходящие в организме. Например, витамины, и минералы, находящиеся
в организме, не могут быть задействованы в отсутствие аминокислот. Для
человека одинаково важны оба типа аминокислот: и заменимые, и незаменимые. Нативные и ненативные белки
Белок бывает двух типов: – Нативные белки содержат все незаменимые аминокислоты. Указанные белки
есть в мясе, рыбе, морепродуктах, птице, яйцах и сыре. Они богаты также
витаминами группы В и микроэлементами, необходимыми организму. Соевые
продукты, такие как тофу, темпе и соевый порошок, не содержат нативных
белков, так как в них нет метионина. Сочетание нативных и ненативных белков Ненативные белки полезно есть в сочетании с другими продуктами. Употребляя
в пищу сочетания определенных ненативных белков, можно получить за один
прием все незаменимые аминокислоты. Для этого можно сочетать такие бобовые,
как, например, фасоль и чечевица, с каким-либо из следующих продуктов:
Раньше считалось, что для получения полноценного белка необходимо одновременно
употреблять в пищу разные продукты. Новые исследования предполагают, что
можно употреблять растительные белки и другие продукты в течение 24 часов,
а не обязательно при одном приеме пищи. Белок помогает худетьПолучая белок регулярно, вы обеспечиваете себя достаточной поддержкой, чтобы продержаться до следующего приема пищи. Белок поставляет все необходимые для сжигания жира компоненты. Если его не потреблять в пищу, мы будем быстро уставать. Часто те, кто не употребляет белка за завтраком, днем переживают упадок. Они стараются наверстать упущенное за счет крахмалов с высоким индексом гликемии и сахаров. Это путь к накоплению веса, а не к его снижению. Не восполняйте упущенное вечером. Рассмотрим типичную женщину, решившую похудеть. Утро она начинает с
чашки кофе или небольшого количества каши и молока. Иногда она ест мюсли
и йогурт. На работе она не обедает и, вот несчастье, во второй половине
дня начинается упадок. Очень неприятное чувство, тем более что ей еще
надо закончить свою работу. Инстинктивно она ищет, чем бы подкрепиться.
Если найдется крахмалосодержащая еда с высоким гликемическим индексом
(скажем, булочка или шоколадка), она быстренько сжует ее. Это чувство
усталости и упадка знакомо всем, кто не поддерживает свой обмен веществ
высококачественным белком. Вы можете спросить: «А как же тот белок, что
в молоке или йогурте, разве он не считается?» Этого недостаточно. Полчашки
молока содержит около 4 граммов белка. Полчашки фруктового йогурта — столько
же. И того и другого недостаточно, чтобы продержаться до обеда. Около
15 — 20 граммов высококачественного белка на завтрак или на обед дали
бы возможность продержаться до вечера. Тогда не пришлось бы во второй
половине дня подкрепляться продуктами с высоким гликемическим индексом,
и вечером человек бы чувствовал себя полным энергии, а не измученным и
истощенным. Потребность в белке Каждый день в идеале нужно съедать от 50 до 100 граммов белка. Так рекомендуют
различные специалисты. Потребность в белке зависит от пола, телослосложения,
мышечной массы и уровня активности. Нетрудно подсчитать, что при трехразовом
питании на каждый прием пищи выпадает по 16 — 33 грамма белка. Если между
приемами пищи вы перекусываете белком, на основной прием будет приходиться
меньше этого питательного вещества.
Контроль уровня сахара в крови Если получать при каждом приеме пищи рекомендованное количество белка,
хроническое понижение уровня сахара в крови останется в прошлом. И не
будет больше угрожать вам, похудевшему. Это очень важно. Слишком много
людей придерживаются ограничительных диет, сначала моря себя голодом,
а затем, когда почувствуют упадок энергии, наедаясь продуктами с высоким
гликемическим индексом.
Я чувствую себя вполне сытым после такой едыПолучив достаточное количество белка, вы встаете из-за стола с чувством
сытого удовлетворения, и это чувство надолго остается при вас. Знаете
старую шутку о китайской еде, — «не важно, сколько съел, через час все
равно голодный»? Вы догадываетесь, почему — в китайской еде очень мало
белка, плюс ненатуральное вещество моноглутамат натрия, не являющееся
питательным. Белок – вот что нужно есть на завтракСнова и снова приходится слышать, что для того, чтобы похудеть, нужно хорошо завтракать. Это верно. Необходимо получать на завтрак белок, чтобы обеспечить себя энергией на весь день и не быть к вечеру вялым. Белок поддерживает нормальный уровень обмена веществ в течение дня и ночи. Он также повышает уровень внимания, стимулируя выработку мозгом допамина.
Так что съедайте каждое утро по 15 — 20 граммов белка. – творог зерненый ( низкокалорийный и содержит много белка) Следующие продукты, содержащие белок, пригодны для того, чтобы съесть их в машине по пути на работу. Конечно, мы не рекомендуем делать этого, но жизнь есть жизнь и приходится с ней считаться. Белок на завтрак, который можно съесть в машине: Белок дает здоровьеКак мы уже сказали, белок — ваш друг. Из него в буквальном смысле строятся красивое тело, густые волосы, здоровые ногти и упругие мышцы. Белок стимулирует выработку сжигающего жир гормона, глюкогона, обеспечивает аминокислотами организм для обновления тканей и повышает уровень обмена веществ (даже тогда, когда вы спите!). Белки должны занимать одно из главных мест в рационе. Ешьте их не меньше трех раз в день, предпочтительнее при каждом приеме еды.
Ведущий рассылки Владимир Мардинский. E-mail: [email protected] На сегодня все. Заходите на сайт Худеем Вместе.Ру и становитесь участниками клуба. Заходите на мои сайты: Открылся новый массажный кабинет на Исаакиевской площади д.4 Скульптурирующий массаж в массажных кабинетах “Массаж для здоровья”. По материалам книги: Люси Билл “Как сбросить лишний вес”. | Рассылка сайта Худеем Вместе.Ру Выпуск 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 , 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55 |
Белки, жиры и углеводы как источник энергии (стр. 1 из 3)
1997/98 УЧ.ГОД
Выпускной экзамен по биологии за 9-й класс
Проподаватель Рощина
Оценка 5
УЧЕБНО-ВОСПИТАТЕЛЬНЫЙ КОМПЛЕКС №326
ТЕХНОЛОГИЧЕСКАЯ ШКОЛА
ВЫПУСКНОЙ РЕФЕРАТ
ПО БИОЛОГИИ
Тема:
БЕЛКИ, ЖИРЫ И УГЛЕВОДЫ
КАК ИСТОЧНИК ЭНЕРГИИ
Ученицы 9В класса
Бронштейн Аси
Москва 1998 год
СОДЕРЖАНИЕ
ВСТУПЛЕНИЕ
Нормальная деятельность организма возможна при непрерывном поступлении пищи. Входящие в состав пищи жиры, белки, углеводы, минеральные соли, вода и витамины необходимы для жизненных процессов организма.
Питательные вещества являются как источником энергии, покрывающем расходы организма, так и строительным материалом, который используется в процессе роста организма и воспроизведения новых клеток, замещающих отмирающие. Но питательные вещества в том виде, в каком они употребляются в пищу, не могут всосаться и быть использованными организмом. Только вода, минеральные соли и витамины всасываются и усваиваются в том виде, в каком они поступают.
Питательными веществами называются белки, жиры и углеводы. Эти вещества являются необходимыми составными частями пищи. В пищеварительном тракте белки, жиры и углеводы подвергаются как физическим воздействиям (измельчаются и перетираются), так и химическим изменениям, которые происходят под влиянием особых веществ – ферментов, содержащихся в соках пищеварительных желёз. Под влиянием пищеварительных соков питательные вещества расщепляются на более простые, которые всасываются и усваиваются организмом.
БЕЛКИ
СТРОЕНИЕ, СВОЙСТВА И ФУНКЦИИ
“Во всех растениях и животных присутствует некое вещество, которое без сомнения является наиболее важным из всех известных веществ живой природы и без которого жизнь была бы на нашей планете невозможна. Это вещество я наименовал – протеин”. Так писал еще в 1838 году голландский биохимик Жерар Мюльдер, который впервые открыл существование в природе белковых тел и сформулировал свою теорию протеина. Слово “протеин” (белок) происходит от греческого слова “протейос”, что означает “занимающий первое место”. И в самом деле, все живое на земле содержит белки. Они составляют около 50% сухого веса тела всех организмов. У вирусов содержание белков колеблется в пределах от 45 до 95%.
Белки являются одними из четырех основных органических веществ живой материи (белки, нуклеиновые кислоты, углеводы, жиры), но по своему значению и биологическим функциям они занимают в ней особое место. Около 30% всех белков человеческого тела находится в мышцах, около 20% – в костях и сухожилиях и около 10% – в коже. Но наиболее важными белками всех организмов являются ферменты, которые, холя и присутствуют в их теле и в каждой клетке тела в малом количестве, тем не менее управляют рядом существенно важных для жизни химических реакций. Все процессы, происходящие в организме: переваривание пищи, окислительные реакции, активность желез внутренней секреции, мышечная деятельность и работа мозга регулируется ферментами. Разнообразие ферментов в теле организмов огромно. Даже в маленькой бактерии их насчитываются многие сотни.
Белки, или, как их иначе называют, протеины, имеют очень сложное строение и являются наиболее сложными из питательных веществ. Белки – обязательная составная часть всех живых клеток. В состав белков входят: углерод, водород, кислород, азот, сера и иногда фосфор. Наиболее характерно для белка наличие в его молекуле азота. Другие питательные вещества азота не содержат. Поэтому белок называют азотосодержащис веществом.
Основные азотосодержащие вещества, из которых состоят белки, – это аминокислоты. Количество аминокислот невелико – их известно только 28. Все громадное разнообразие содержащихся в природе белков представляет собой различное сочетание известных аминокислот. От их сочетания зависят свойства и качества белков.
При соединении двух или нескольких аминокислот образуется более сложное соединение – полипептид. Полипептиды, соединяясь, образуют еще более сложные и крупные частицы и в итоге – сложную молекулу белка.
Когда в пищеварительном тракте или в эксперименте белки расщепляются на более простые соединения, то через ряд промежуточных стадий ( альбумоз и пептонов) они расщепляются на полипептиды и, наконец, на аминокислоты. Аминокислоты в отличие от белков легко всасываются и усваиваются организмом. Они используются организмом для образования собственного специфического белка. Если же вследствие избыточного поступления аминокислот их расщепление в тканях продолжается, то они окисляются до углекислого газа и воды.
Большинство белков растворяется в воде. Молекулы белков в силу их больших размеров почти не проходят через поры животных или растительных мембран. При нагревании водные растворы белков свертываются. Есть белки (например, желатина), которые растворяются в воде только при нагревании.
При поглощении пища сначала попадает в ротовую полость, а затем по пищеводу в желудок. Чистый желудочный сок бесцветен, имеет кислую реакцию. Кислая реакция зависит от наличия соляной кислоты, концентрация которой составляет 0,5%.
Желудочный сок обладает свойством переваривать пищу, что связано с наличием в нем ферментов. Он содержит пепсин – фермент, расщепляющий белок. Под влиянием пепсина белки расщепляются на пептоны и альбумозы. Железами желудка пепсин вырабатывается в неактивном виде, переходит в активную форму при воздействии на него соляной кислоты. Пепсин действует только в кислой среде и при попадании в щелочную среду становится не гативным.
Пища, поступив в желудок, более или менее длительное время задерживается в нем – от 3 до 10 часов. Срок пребывания пищи в желудке зависит от ее характера и физического состояния – жидкая она или твердая. Вода покидает желудок немедленно после поступления. Пища, содержащая большее количество белков, задерживается в желудке дольше, чем углеводная; еще дольше остается в желудке жирная пища. Передвижение пищи происходит благодаря сокращению желудка, что способствует переходу в пилорическую часть, а затем в двенадцатиперстную кишку уже значительно переваренной пищевой кашицы.
Пищевая кашица, поступившая в двенадцатиперстную кишку, подвергается дальнейшему перевариванию. Здесь на пищевую кашицу изливается сок кишечных желез, которыми усеяна слизистая оболочка кишки, а также сок поджелудочной железы и желчь. Под влиянием этих соков пищевые вещества – белки, жиры и углеводы – подвергаются дальнейшему расщеплению и доводятся до такого состояния, когда могут всосаться в кровь и лимфу.
Поджелудочный сок бесцветен и имеет щелочную реакцию. Он содержит ферменты, расщепляющие белки, углеводы и жиры.
Одним из основных ферментов является трипсин, находящийся в соке поджелудочной железы в недеятельном состоянии в виде трипсиногена. Трипсиноген не может расщеплять белки, если не будет переведен в активное состояние, т.е. в трипсин. Трипсиноген переходит в трипсин при соприкосновении с кишечным соком под влиянием находящегося в кишечном соке вещества энтерокиназы. Энтерокиназа образуется в слизистой оболочке кишечника. В двенадцатиперстной кишке действие пепсина прекращается, так как пепсин действует только в кислой среде. Дальнейшее переваривание белков продолжается уже под влиянием трипсина.
Трипсин очень активен в щелочной среде. Его действие продолжается и в кислой среде, но активность падает. Трипсин действует на белки и расщепляет их до аминокислот; он также расщепляет образовавшиеся в желудке пептоны и альбумозы до аминокислот.
В тонких кишках заканчивается переработка пищевых веществ, начавшаяся в желудке и двенадцатиперстной кишке. В желудке и двенадцатиперстной кишке белки, жиры и углеводы расщепляются почти полностью, только часть их остается непереваренной. В тонких кишках под влиянием кишечного сока происходит окончательное расщепление всех пищевых веществ и всасывание продуктов расщепления. Продукты расщепления попадают в кровь. Это происходит через капилляры, каждый из которых подходит к ворсинке, расположенной на стенке тонких кишков.
ОБМЕН БЕЛКОВ
После расщепления белков в пищеварительном тракте образовавшиеся аминокислоты всасываются в кровь. В кровь всасывается также незначительное количество полипептидов – соединений, состоящих из нескольких аминокислот. Из аминокислот клетки нашего тела синтезируют белок, причем белок, который образуется в клетках человеческого организма, отличается от потребленного белка и характерен для человеческого организма.
Образование нового белка в организме человека и животных идет беспрерывно, так как в течении всей жизни взамен отмирающих клеток крови, кожи, слизистой оболочки, кишечника и т. д. создаются новые, молодые клетки. Для того чтобы клетки организма синтезировали белок, необходимо, чтобы белки поступали с пищей в пищеварительный канал, где они подвергаются расщиплению на аминокислоты, и уже из всосавшихся аминокислот будет образован белок.
Если же, минуя пищеварительный тракт, ввести белок непосредственно в кровь, то он не только не может быть использован человеческим организмом, он вызывает ряд серьезных осложнений. На такое введение белка организм отвечает резким повышением температуры и некоторыми другими явлениями. При повторном введении белка через 15-20 дней может наступить даже смерть при параличе дыхания, резком нарушение сердечной деятельности и общих судорогах.