Можно ли зная аминокислотный состав: Можно ли, зная аминокислотный состав белка определить нуклеотидную последовательность структурного гена? – Таблица аминокислот в продуктах питания и суточная норма потребления
Таблица аминокислот в продуктах питания и суточная норма потребления
Здравствуйте, уважаемые читатели моего блога! Если вы серьезно относитесь к собственному здоровью, предлагаю вместе окунуться в мир органических соединений. Сегодня я расскажу про аминокислоты в продуктах питания, таблица которых будет прилагаться для удобства в статье. Так же поговорим о необходимой суточной норме для человека.

Аминокислоты
Многие из нас знают об этих органических соединениях, но не все смогут объяснить, что это и зачем они нужны. Поэтому, начнем с азов.
Аминокислоты – это структурные химические единицы, которые образуют белки
Последние участвуют абсолютно во всех физиологических процессах организма. Они формируют мышцы, сухожилия, связки, органы, ногти, волосы и являются частью костей. Замечу, что гормоны и ферменты, регулирующие рабочие процессы в организме, тоже представляют собой белки. Они уникальны по своей структуре и цели у каждого из них свои. Белки синтезируются из аминокислот, которые человек получает из пищи. Отсюда напрашивается интересный вывод – не белки самый ценный элемент, а аминокислоты.
Заменимые, условно незаменимые и незаменимые
Удивительно, но растения и микроорганизмы способны самостоятельно синтезировать все аминокислоты. А вот человек и животные на такое не подписаны.
Заменимые аминокислоты. Производятся нашим организмом самостоятельно. К ним относятся:
- глютаминовая кислота;
- аспарагиновая кислота;
- аспарагин;
- глютамин;
- орнитин;
- пролин;
- аланин;
- глицин.
Условно незаменимые аминокислоты. Наш организм их создает, но не в достаточных количествах. К ним относятся гистидин и аргинин.

Незаменимые аминокислоты. Получить их можно только из добавок или пищевых продуктов. Более подробно о них написано в статье про незаменимые аминокислоты для человека.
Продукты богатые аминокислотами
Для полноценной работы нашего организма каждому человеку следует знать в каких продуктах содержатся органические соединения:
- Яйца – они подарят нам BCAA, метионин и фенилаланин. Усваиваются на ура гарантируя белковую подкормку для организма.
- Молочные продукты – обеспечивают человека аргинином, валином, лизином, фенилаланином и триптофаном.
- Белое мясо – содержит BCAA, гистидин, лизин, фенилаланин и триптофан.
- Рыба – отличный источник белка, который легко усваивается организмом. Богата метионином, фенилаланином и BCAA.
Многие уверены, что получить белок можно лишь из продуктов животного происхождения. Это неверно. Растительная пища тоже богата им и является источником органических соединений:
- Бобовые – богаты фенилаланином, лейцином, валином, метионином, триптофан и треонином.
- Крупы – подарят организму лейцин, валин, гистидин и изолейцин.
- Орехи и семена – обеспечивают аргинином, треонином, изолейцином, гистидином и лизином.
Отдельно хочется выделить киноа. Этот злак не так популярен, как привычные нам гречка и пшено, а зря.
Потому что на 100 грамм продукта приходится порядка 14 грамм белка. Поэтому киноа незаменима для вегетарианцев и прекрасно подойдет мясоедам. Не будем также забывать о православных постах, которые несколько раз в год запрещают есть мясо, рыбу и молочную продукцию.
Для удобства я предлагаю ознакомиться со списком продуктов в виде таблицы. Ее можно скачать и распечатать.
Суточная норма потребления аминокислот
Мы каждый день нуждаемся в органических соединениях, но бывают такие периоды в жизни, когда их надобность увеличивается:
- во время занятий спортом;
- в период болезни и выздоровления;
- в период умственных и физических нагрузок.
И, наоборот, бывает, что потребность в них понижается в случае врожденных нарушений, которые связаны с усвояемостью аминокислот.
Следовательно, для комфорта и бесперебойной работы организма следует знать суточную норму потребления органических соединений. Согласно диетологическим таблицам она варьируется от 0,5 грамм до 2 грамм в сутки.
Усвояемость аминокислот зависит от типа тех продуктов, в которых они содержатся. Очень хорошо усваиваются органические соединения из белка яиц.

Тоже самое можно сказать про творог, рыбу и нежирное белое мясо. Также здесь огромную роль играет сочетание продуктов. Например, молоко и гречневая каша. В таком случае человек получает полноценный белок и комфортный для организма процесс его усвоения.
Нехватка и переизбыток аминокислот
Какие признаки могут означать нехватку органических соединений в организме:
- слабая сопротивляемость инфекциям;
- ухудшение состояния кожи;
- задержка роста и развития;
- выпадение волос;
- сонливость;
- анемия.
Помимо нехватки аминокислот в организме может возникнуть их переизбыток. Его признаки следующие: нарушения в работе щитовидной железы, заболевания суставов, гипертония.
Следует знать, что подобные проблемы могут возникнуть если в организме нехватка витаминов. В случае нормы, избыток органических соединений будет нейтрализован.
В случае нехватки и переизбытка аминокислот очень важно помнить, что определяющим фактором здесь является питание.

Грамотно составляя рацион, вы прокладываете себе путь к здоровью. Отметим, что такие болезни как сахарный диабет, нехватка ферментов или поражение печени. Они ведут к абсолютно неконтролируемому содержанию в организме органических соединений.
Как получить аминокислоты
Мы уже все поняли какую глобальную роль играют в нашей жизни аминокислоты. И поняли, сколь значимо контролировать их поступление в организм. Но, есть такие ситуации, когда стоит обратить на их примем особое внимание. Речь идет о занятиях спортом. Особенно, если мы говорим о профессиональном спорте. Тут зачастую спортсмены обращаются за дополнительными комплексами, не надеясь только на продукты питания.
Нарастить мышечную массу можно с помощью валина и лейцина изолейцина. Сохранить запас энергии на тренировке лучше при помощи глицина, метионина и аргинина. Но, все это будет бесполезным, если вы не будете питаться продуктами, которые богаты аминокислотами. Это важная составляющая активного и полноценного образа жизни.
Подводя итоги можно сказать – содержание аминокислот в пищевых продуктах способно удовлетворить потребность в них для всего организма. Не считая профессионального спорта, когда на мышцы идут колоссальные нагрузки, и они нуждаются в дополнительной помощи.

Или же в случае проблем со здоровьем. Тогда тоже лучше дополнить рацион специальными комплексами органических соединений. Их, кстати, можно заказать в интернете или же приобрести у поставщиков спортивного питания. Я хочу, чтобы вы запомнили в чем самое важное – в вашем ежедневном рационе. Обогащайте его продуктами богатыми аминокислотами и соответственно белками. Не зацикливайтесь только на молочной продукции или мясе. Готовьте разнообразные блюда. Не забывайте, что растительная пища тоже обогатит вас нужными органическими соединениями. Только в отличии от животной пищи, не оставит ощущение тяжести в животе.
Я говорю до свидания, уважаемые читатели. Делитесь статьей в социальных сетях и ждите новых постов.
С уважением, Ольга Сологуб


Генетический код — Википедия
Схема генетического кода

Генети́ческий код (англ. Genetic code) — совокупность правил, согласно которым в живых клетках последовательность нуклеотидов (ген и мРНК) переводится в последовательность аминокислот (белок). Собственно перевод (трансляцию) осуществляет рибосома, которая соединяет аминокислоты в цепочку согласно инструкции, записанной в кодонах мРНК. Соответствующие аминокислоты доставляются в рибосому молекулами тРНК. Генетический код всех живых организмов Земли един (имеются лишь незначительные вариации), что свидетельствует о наличии общего предка.
Правила генетического кода определяют, какой аминокислоте соответствует триплет (три подряд идущих нуклеотида) в мРНК. За редкими исключениями[1], каждому кодону соответствует только одна аминокислота. Конкретная аминокислота может кодироваться более чем одним кодоном, есть также кодоны, означающие начало и конец белка. Вариант генетического кода, который используется подавляющим большинством живых организмов, называют стандартным, или каноническим, генетическим кодом. Однако известно несколько десятков исключений из стандартного генетического кода, например, при трансляции в митохондриях используются несколько изменённые правила генетического кода.
Простейшим представлением генетического кода может служить таблица из 64 ячеек, в которой каждая ячейка соответствует одному из 64 возможных кодонов[2].

В 1961 году триплетность генетического кода удалось подтвердить экспериментально. В том же году Маршалл Ниренберг и его коллега Генрих Маттеи[en] использовали бесклеточную систему для трансляции in vitro. В качестве матрицы был взят олигонуклеотид, состоящий из остатков урацила (UUUU…). Пептид, синтезированный с него, содержал только аминокислоту фенилаланин[4]. Так впервые было установлено значение кодона: кодон UUU кодирует фенилаланин. Дальнейшие правила соответствия между кодонами и аминокислотами были установлены в лаборатории Северо Очоа. Было показано, что полиадениновая РНК (ААА…) транслируется в полилизиновый пептид
После установления правил генетического кода многие учёные занялись его искусственными преобразованиями[en]. Так, начиная с 2001 года в генетический код были внедрены 40 аминокислот, которые в природе не входят в состав белков. Для каждой аминокислоты создавались свой кодон и соответствующая аминоацил-тРНК-синтетаза. Искусственное расширение генетического кода и создание белков с новыми аминокислотами могут помочь глубже изучить структуру белковых молекул, а также получить искусственные белки с заданными свойствами [8][9]. Х. Мураками и М. Сисидо смогли превратить некоторые кодоны из трёхнуклеотидных в четырёх- и пятинуклеотидные. Стивен Бреннер получил 65-й кодон, который был функционален in vivo[10].
В 2015 году у бактерии Escherichia coli удалось изменить значение всех кодонов UGG с триптофана на тиенопиррол-аланин, не встречающийся в природе[11]. В 2016 году был получен первый полусинтетический организм — бактерия, геном которой содержал два искусственных азотистых основания (X и Y), сохраняющихся при делении[12][13]. В 2017 году исследователи из Южной Кореи заявили о создании мыши с расширенным генетическим кодом, способной синтезировать белки с аминокислотами, не встречающимися в природе
Рамка считывания[править | править код]
Гены кодируются в направлении 5’→3′ нуклеотидной последовательности[15]. Рамка считывания определяется самым первым триплетом, с которого начинается трансляция. Последовательность неперекрывающихся кодонов, начинающуюся со старт-кодона и заканчивающуюся стоп-кодоном, называют открытой рамкой считывания. Например, последовательность 5′-AAATGAACG-3′ (см. рис.) при чтении с первого нуклеотида разбивается на кодоны AAA, TGA и ACG. Если чтение начинается со второго нуклеотида, то ей соответствуют кодоны AAT и GAA. Наконец, при чтении с третьего нуклеотида используются кодоны ATG и AAC. Таким образом, любую последовательность можно прочесть в направлении 5′ → 3′ тремя разными способами (с тремя разными рамками считывания), причём в каждом случае последовательность белкового продукта будет отличаться из-за распознавания рибосомой разных кодонов. Если учесть, что ДНК имеет двуцепочечную структуру, то возможны 6 рамок считывания: три на одной цепи и три на другой [16]. Однако считывание генов с ДНК не является случайным. Все другие рамки считывания в пределах одного гена обычно содержат многочисленные стоп-кодоны, чтобы быстро остановить и уменьшить метаболическую стоимость неправильного синтеза
Старт- и стоп-кодоны[править | править код]
Трансляция информации с последовательности мРНК в аминокислотную последовательность начинается с так называемого старт-кодона — как правило, AUG, причём у эукариот он читается как метионин, а у бактерий — как формилметионин. Одного старт-кодона недостаточно для запуска трансляции; для него необходимы факторы инициации трансляции, а также особые элементы в соседних последовательностях, например, последовательность Шайна — Дальгарно у бактерий. У некоторых организмов в роли старт-кодонов используются кодоны GUG, который в норме кодирует валин, и UUG, который в стандартном коде соответствует лейцину[18].
После инициационного кодона трансляция продолжается через последовательное считывание кодонов и присоединение аминокислот друг к другу рибосомой до достижения сигнала к прекращению трансляции — стоп-кодона. Существуют три стоп-кодона, каждый из которых имеет своё название: UAG (янтарь), UGA (опал) и UAA (охра). Стоп-кодоны также называют терминаторными. В клетках нет тРНК, соответствующих стоп-кодонам, поэтому, когда рибосома доходит до стоп-кодона, вместо тРНК с ним взаимодействуют факторы терминации трансляции, которые гидролизуют последнюю тРНК от аминокислотной цепочки, а затем заставляют рибосому диссоциировать [19]. У бактерий в терминации трансляции принимают участие три белковых фактора[en]: RF-1, RF-2 и RF-3: RF-1 узнаёт кодоны UAG и UAA, а RF-2 распознаёт UAA и UGA. Фактор RF-3 выполняет вспомогательную работу. Трёхмерная структура RF-1 и RF-2 напоминает формой и распределением заряда тРНК и, таким образом, представляет собой пример молекулярной мимикрии[en][20]. У эукариот фактор терминации трансляции eRF1 распознаёт все три стоп-кодона. Зависимая от рибосомы ГТФаза eRF3, которую рассматривают как второй фактор терминации трансляции эукариот, помогает eRF1 в высвобождении с рибосомы готового полипептида
Распределение стоп-кодонов в геноме организма неслучайно и может быть связано с GC-составом генома[24][25]. Например, у штамма E. coli K-12 в геноме имеется 2705 кодонов TAA (63 %), 1257 TGA (29 %) и 326 TAG (8 %) при GC-составе 50,8 %[26]. Масштабное исследование геномов разных видов бактерий показало, что доля кодона TAA положительно коррелирует с GC-составом, а доля TGA — отрицательно. Частота самого редко используемого стоп-кодона, TAG, не связана с GC-составом[27]. Сила стоп-кодонов также неодинакова. Спонтанный обрыв трансляции чаще всего происходит на кодоне UGA, а на UAA — реже всего[23].
Помимо собственно стоп-кодона, важнейшее значение для терминации трансляции имеет его окружение. Наиболее велика роль нуклеотида, расположенного сразу за стоп-кодоном (+4). Вероятно, нуклеотид +4 и другие нуклеотиды, следующие за ним, влияют на терминацию трансляции, обеспечивая сайты связывания факторов терминации трансляции. По этой причине некоторые исследователи предлагают рассматривать четырёхнуклеотидный стоп-сигнал вместо трёхнуклеотидного стоп-кодона. Нуклеотиды, расположенные выше стоп-кодонов, также влияют на трансляцию. Например, для дрожжей было показано, что аденин, располагающийся на 2 позиции выше первого нуклеотида стоп-кодона, стимулирует обрыв трансляции на стоп-кодоне UAG (возможно, и на остальных кодонах) [23].
Иногда стоп-кодоны выступают в роли смысловых. Например, кодон UGA кодирует нестандартную аминокислоту селеноцистеин, если рядом с ним в транскрипте находится так называемый SECIS-элемент[28]. Стоп-кодон UAG может кодировать другую нестандартную аминокислоту — пирролизин. Иногда стоп-кодон распознаётся как смысловой при мутациях, затрагивающих тРНК. Наиболее часто это явление наблюдается у вирусов, но оно также описано у бактерий, дрожжей, дрозофилы и человека, у которых играет регуляторную роль
Генетический код и мутации[править | править код]
В ходе репликации ДНК изредка возникают ошибки при синтезе дочерней цепи. Эти ошибки, называемые мутациями, могут повлиять на фенотип организма, особенно если они затрагивают кодирующую область гена. Ошибки происходят с частотой 1 на каждые 10—100 миллионов пар оснований (п. о.), так как ДНК-полимеразы могут эффективно исправлять свои ошибки[31][32].
Под точечными мутациями понимают единичные замены одного азотистого основания. Если новое основание относится к тому же классу, что и исходное (оба пурины или оба пиримидины), то мутацию относят к транзициям. Если происходит замена пурина на пиримидин или пиримидина на пурин, то говорят о трансверсиях[en]. Транзиции встречаются чаще трансверсий[33]. Примерами точечных мутаций являются миссенс- и нонсенс-мутации. Они могут вызывать такие заболевания, как серповидноклеточная анемия и талассемия соответственно[34][35]. Клинически значимые миссенс-мутации приводят к замене аминокислотного остатка на остаток с другими физико-химическими свойствами, а нонсенс-мутации заключаются в появлении преждевременного стоп-кодона[16].
Мутации, при которых нарушается правильная рамка считывания из-за вставок и делеций (в совокупности они называются инделами[en]), содержащих некратное трём число нуклеотидов, называются мутациями сдвига рамки считывания. При этих мутациях белковый продукт получается совершенно иной, чем в диком типе. Как правило, при сдвигах рамки считывания появляются преждевременные стоп-кодоны, которые вызывают образование усечённых белков[36]. Поскольку эти мутации значительно нарушают функцию белка, они довольно редко закрепляются отбором: нередко отсутствие белка приводит к гибели организма ещё до рождения[37]. Мутации сдвига рамки считывания связаны с такими заболеваниями, как болезнь Тея — Сакса[38].
Хотя подавляющее число мутаций вредны или нейтральны[en], некоторые оказываются полезными[39]. Они могут давать организму лучшую приспособленность по сравнению с диким типом к определённым условиям окружающей среды или дают ему возможность размножаться быстрее особей дикого типа. В этом случае мутация будет постепенно распространяться в популяции в ходе нейтрального отбора[40]. Вирусы, геномы которых представлены РНК, мутируют очень быстро[41], что нередко приносит им пользу, потому что иммунная система, эффективно распознающая одни варианты вирусных антигенов, оказывается бессильна против слегка изменённых[42]. В больших популяциях организмов, размножающихся бесполым путём, например, E. coli, одновременно может происходить несколько полезных мутаций. Этот феномен получил название клональной интерференции[en] и вызывает конкуренцию между мутациями[43].
Вырожденность[править | править код]

Способность разных кодонов кодировать одну аминокислоту называется вырожденностью кода. Впервые генетический код назвали вырожденным[en] Ниренберг и Бернфилд. Однако, несмотря на вырожденность, в генетическом коде полностью отсутствует двусмысленность. Например, кодоны GAA и GAG оба кодируют глутамат, но ни один из них не кодирует одновременно ещё какую-то аминокислоту. Кодоны, соответствующие одной аминокислоте, могут различаться по любым позициям, однако чаще всего две первые позиции у таких кодонов совпадают, а различается только последняя. Благодаря этому мутация, затронувшая третью позицию кодона, скорее всего, не скажется на белковом продукте[44].
Эта особенность может быть объяснена гипотезой неоднозначной пары оснований, предложенной Франсисом Криком. Согласно этой гипотезе, третий нуклеотид в кодоне ДНК может быть не полностью комплементарен антикодону тРНК для компенсации несоответствия числа типов тРНК числу кодонов[45][46].
Кодоны близких по физико-химическим свойствам аминокислот также нередко похожи, благодаря чему мутации не приводят к значительным нарушениям белковой структуры. Так, кодоны NUN (N — любой нуклеотид) обычно кодируют гидрофобные аминокислоты. NCN кодируют маленькие аминокислоты с умеренной гидрофобностью, а NAN кодируют гидрофильные аминокислоты среднего размера. Генетический код устроен настолько оптимально с точки зрения гидрофобности, что математический анализ при помощи сингулярного разложения 12 переменных (4 нуклеотида на 3 позиции) даёт значимую корреляцию (0,95) для предсказания гидрофобности аминокислоты по её кодону[47]. На восемь аминокислот мутации по третьим позициям не влияют вообще, а мутации по второй позиции, как правило, приводят к замене на аминокислоту с совершенно другими физико-химическими свойствами. Однако наибольшее влияние на белковый продукт имеют мутации по первым позициям. Так, мутации, приводящие к замене заряженной аминокислоты на аминокислоту с противоположным зарядом, могут затрагивать только первую позицию, а вторую — никогда. Такая замена заряда, вероятнее всего, окажет сильный эффект на структуру белка[48].
В таблице ниже представлен генетический код, общий для большинства про- и эукариот. В таблице приведены все 64 кодона и указаны соответствующие аминокислоты. Порядок оснований — от 5′- к 3′-концу мРНК. Приведены трёхбуквенные и однобуквенные обозначения аминокислот.
неполярный | полярный | основный | кислотный | (стоп-кодон) |
- A Кодон AUG кодирует метионин и одновременно является сайтом инициации трансляции: первый кодон AUG в кодирующей области мРНК служит началом синтеза белка[49].
Ala/A | GCU, GCC, GCA, GCG | Leu/L | UUA, UUG, CUU, CUC, CUA, CUG |
---|---|---|---|
Arg/R | CGU, CGC, CGA, CGG, AGA, AGG | Lys/K | AAA, AAG |
Asn/N | AAU, AAC | Met/M | AUG |
Asp/D | GAU, GAC | Phe/F | UUU, UUC |
Cys/C | UGU, UGC | Pro/P | CCU, CCC, CCA, CCG |
Gln/Q | CAA, CAG | Ser/S | UCU, UCC, UCA, UCG, AGU, AGC |
Glu/E | GAA, GAG | Thr/T | ACU, ACC, ACA, ACG |
Gly/G | GGU, GGC, GGA, GGG | Trp/W | UGG |
His/H | CAU, CAC | Tyr/Y | UAU, UAC |
Ile/I | AUU, AUC, AUA | Val/V | GUU, GUC, GUA, GUG |
START | AUG | STOP | UAG, UGA, UAA |
Нестандартные аминокислоты[править | править код]
В некоторых белках нестандартные аминокислоты кодируются стоп-кодонами в зависимости от наличия особой сигнальной последовательности в мРНК. Например, стоп-кодон UGA может кодировать селеноцистеин, а UAG — пирролизин. Селеноцистеин и пирролизин рассматривают как 21-ю и 22-ю протеиногенную аминокислоту соответственно. В отличие от селеноцистеина, у пирролизина есть собственная аминоацил-тРНК-синтетаза[50]. Хотя обычно генетический код, используемый клетками одного организма, фиксирован, архея Acetohalobium arabaticum[en] может переключаться с 20-аминокислотного кода на 21-аминокислотный (включая пирролизин) при разных условиях роста[51].
Вариации[править | править код]

Существование отклонений от стандартного генетического кода предсказывалось ещё в 1970-х[52]. Первое отклонение было описано в 1979 году в митохондриях человека[53]. Впоследствии было описано ещё несколько альтернативных генетических кодов, слегка отличающихся от стандартного, в том числе альтернативные митохондриальные коды[54].
Например, у бактерий рода Mycoplasma стоп-кодон UGA кодирует триптофан, а у дрожжей из так называемой «CTG-клады» (в том числе патогенного вида Candida albicans) кодон CUG кодирует серин, а не лейцин, как в стандартном генетическом коде[55][56][57]. Поскольку вирусы используют тот же генетический код, что и клетки-хозяева, отклонения от стандартного генетического кода могут нарушить размножение вирусов[58]. Впрочем, некоторые вирусы, например, вирусы рода Totivirus[en], используют тот же альтернативный генетический код, что и организм-хозяин[59].
У бактерий и архей GUG и UUG нередко выступают старт-кодонами[60]. Некоторые отклонения от стандартного генетического кода есть и в ядерном геноме человека: так, в 4 % мРНК фермента малатдегидрогеназы один из стоп-кодонов кодирует триптофан или аргинин[61]. Значение стоп-кодона зависит от его окружения[30]. Отклонения в генетическом коде организма можно обнаружить, если найти в его геноме очень консервативные гены и сравнить их кодоны с соответствующими аминокислотами гомологичных белков близкородственных организмов. По такому принципу работает программа FACIL, которая рассчитывает, с какой частотой каждый кодон соответствует той или иной аминокислоте, а также определяет поддержку стоп-кодона и представляет результат в виде логотипа (LOGO)[62]. Впрочем, несмотря на все перечисленные отличия, генетические коды, используемые всеми организмами, в общих чертах схожи[63].
В таблице ниже перечислены известные на данный момент нестандартные генетические коды[64][65]. Насчитывают 23 нестандартных генетических кода, причём наиболее частым отличием от стандартного генетического кода является превращение стоп-кодона UGA в смысловой, кодирующий триптофан[66].
Список нестандартных генетических кодов
Биохимические свойства аминокислот | неполярная | полярная | основная | кислая | Терминация: стоп-кодон |
В геномах многих организмов наблюдается так называемое предпочтение кодонов, то есть частота встречаемости всех синонимичных кодонов, соответствующих определённой аминокислоте, неравна и для одних кодонов выше, чем для других[67][68]. Эволюционные основы возникновения предпочтения кодонов неясны. Согласно одной гипотезе, реже встречаются те кодоны, которые наиболее часто мутируют. Другая гипотеза утверждает, что предпочтение кодонов регулируется естественным отбором в пользу тех, которые обеспечивают наибольшую эффективность и точность экспрессии генов[69][70]. Предпочтение кодонов в значительной мере связано с GC-составом генома, и в некоторых случаях по GC-составу можно даже предсказать частоту использования кодонов[71]. С функциональной точки зрения предпочтение кодонов связано с эффективностью и точностью трансляции и, следовательно, уровнем экспрессии гена[72][73].

В настоящее время наиболее общепринятой гипотезой о происхождении жизни на Земле является гипотеза мира РНК. Любая модель возникновения генетического кода использует гипотезу о передаче основных функций от РНК-ферментов (рибозимов) к белковым ферментам. Как и предполагает гипотеза мира РНК, тРНК появились раньше аминоацил-тРНК-синтетаз, поэтому эти ферменты не могли оказать влияние на свойства тРНК[74].
Генетический код последнего универсального общего предка (LUCA) был основан, вероятнее всего, на ДНК, а не РНК[75]. Генетический код состоял из трёхнуклеотидных кодонов, и всего было возможно 64 различных кодона. Поскольку для построения белков использовалось только 20 аминокислот, некоторые аминокислоты кодировались несколькими кодонами[76][77][78][79].
Если бы соответствие между кодонами и аминокислотами было случайным, в природе существовало бы 1,5 × 1084 генетических кодов[80]. Это число получилось в результате расчёта количества способов, которыми можно 21 предмет (20 кодонов, кодирующих аминокислоты, и один стоп-кодон) разложить в 64 корзины, так, чтобы каждый предмет был использован по крайней мере единожды[81]. Однако соответствия кодонов и аминокислот неслучайны[82]. Аминокислоты, которые имеют общий путь биосинтеза, как правило, имеют общую первую позицию кодонов. Этот факт может быть пережитком раннего, более простого генетического кода, который содержал меньше аминокислот, чем современный, и постепенно включил в свой состав все 20 аминокислот[83]. Кодоны аминокислот со схожими физико-химическими свойствами также, как правило, похожи, что смягчает последствия точечных мутаций и нарушений трансляции[84][85].
Поскольку генетический код неслучаен, правдоподобная гипотеза о его возникновении должна объяснять такие свойства стандартного генетического кода, как отсутствие кодонов для D-аминокислот, включение всего лишь 20 аминокислот из возможных 64, ограничение синонимичных замен третьей позицией кодонов, функционирование в качестве стоп-кодонов именно кодонов UAG, UGA и UAA[86]. Существуют три основные гипотезы происхождения генетического кода. Каждая из них представлена множеством моделей, многие модели гибридны[87].
- Замороженная случайность: генетический код возник случайно и в таком виде закрепился. Возможно, древние рибозимы, подобные современным тРНК, имели разное сродство к аминокислотам, причём кодоны из разных частей одного и того же рибозима могли обладать наибольшим сродством к разным аминокислотам. После того, как появились первые функциональные пептиды, любое изменение генетического кода было бы летальным, поэтому он оказался «заморожен»[88].
- Стереохимическое сродство: генетический код определяется высоким сродством каждой аминокислоты с соответствующими ей кодонами и антикодонами. Сродство аминокислоты и антикодона означает, что предковым тРНК соответствовали те аминокислоты, с которыми они связывались с наибольшим сродством. В ходе эволюции соответствие антикодонов и аминокислот заменилось соответствием аминоацил-тРНК-синтетаз и аминокислот[89].
- Оптимальность: генетический код продолжал некоторое время изменяться после своего появления, поэтому современный код обеспечивает максимальную приспособленность и минимизирует последствия мутаций, то есть является лучшим из возможных генетических кодов[87].
Аминокислотный скор — SportWiki энциклопедия
Формула определения аминокислотного скора«Аминокислотный скор» – это метод определения качества протеина, путём сравнения аминокислот в исследуемом продукте с «идеальным» белком. Под идеальным белком понимают гипотетический белок с идеально сбалансированным аминокислотным составом.
Если при таком сравнении получится, что значение какой либо аминокислоты меньше 100 процентов, это будет говорить о сниженной биологической ценности белка и приведёт к необходимости употребления больших его количеств в пищу для восполнения потребности организма в определённых аминокислотах. Аминокислоты, которых при расчёте аминокислотного скора оказывается меньше 100 процентов, называются лимитирующими, так как именно они лимитируют (определяют) количество продукта, которое необходимо употребить в пищу.
Значения аминокислотного скора для некоторых продуктов:
- пшеница: лизин (56 %), треонин (77 %),
- рис: лизин (69 %), треонин (77 %),
- кукуруза: лизин (44 %), треонин (60 %),
- ячневая, перловая крупы: треонин (62 %), лизин (64 %),
- пшено: лизин (49 %), валин (79 %),
- бобовые: метионин + цистеин (фасоль — 59 %, соя — 88 %),
- коровье молоко (по сравнению с женским): метионин + + цистеин (78 %), триптофан (82 %).
Таким образом, для белка пшеницы, риса, пшена, кукурузы первой лимитирующей аминокислотой является лизин, а для ячневой и перловой круп — треонин, для бобовых — метионин.
Биологическая ценность белков зависит не только от аминокислотного состава, но и от доступности отдельных аминокислот, которая уменьшается при наличии в пище ингибиторов протеаз (например, в бобовых). Содержание лизина снижается при нагревании продуктов, богатых углеводами, вследствие реакции меланоидинообразования.
По скорости переваривания протеазами (пищеварительными ферментами, расщепляющими белки) в желудочно-кишечном тракте продукты-источники белка можно расположить следующим образом:
1) белки, содержащиеся в яйцах, молоке;
2) белки, которыми богата рыба;
3) белки, содержащиеся в мясе;
4) белки хлеба и круп;
5) белки бобовых, грибов.
Лимитирующие аминокислоты: «Закон Либиха»[править | править код]
Лимитирующие аминокислотыНаглядный пример того, как важна лимитирующая аминокислота. Суть в том, что для организма самый значимый – тот фактор, который больше отклоняется от оптимального значения.
Аналогия с бочкой, сбитой из досок, на лицо: если одна доска короче остальных, вода будет уходить через неё. То же самое в спортивном питании: лимитирующая аминокислота будет понижать ценность всего продукта.
Период полужизни белка — скорость обновления половины всех молекул. Она варьируется от нескольких минут до нескольких месяцев.
Средняя продолжительность периода полужизни белков всего организма — 3 недели. Общая скорость синтеза белков в организме в состоянии азотистого равновесия составляет примерно 500 г/сут. С максимальной скоростью синтез белка происходит в печени и поджелудочной железе. Мышцы ежедневно синтезируют 75 г белка. У среднего человека они содержат 40 % всего белка организма. Хотя белковый метаболизм происходит здесь несколько медленнее, чем в других тканях, мышечный белок представляет собой самый большой эндогенный аминокислотный резерв, который при голодании может использоваться для глюконеогенеза (синтеза глюкозы из продуктов белкового и жирового обмена).
Мышцы являются основной мишенью воздействия инсулина: здесь под его влиянием усиливается поступление аминокислот, увеличивается синтез и уменьшается распад мышечного белка.
Если количество теряемого азота больше, чем поступающего с пищей (при лихорадке, рвоте, поносе и др.), то развивается отрицательный азотистый баланс. Когда количество поступающего с пищей азота больше теряемого (у детей, беременных женщин, выздоравливающих больных и др.), наблюдается положительный азотистый баланс.
Растительные белки по сравнению с животными менее полноценны, так как они дефицитны по содержанию незаменимых аминокислот, прежде всего лизина и треонина, и трудно перевариваемы из-за наличия оболочек из клетчатки и других веществ, препятствующих действию протеаз. Ингибиторы протеаз, содержащиеся в бобовых, можно разрушить длительной варкой.
Белки высокой биологической ценности (белки яиц, молочных продуктов, рыбы, мяса, птицы) отличаются сбалансированностью аминокислот и хорошей усвояемостью.
Азотистое равновесие — состояние при котором количество поступающего с пищей азота равно количеству азота, выделяемого с мочой, потом, калом, выдыхаемым воздухом.
Содержание белков в 100 г съедобной части продуктов
- Очень большое (более 15,0 г): сыр голландский и плавленый, творог нежирный, мясо животных и кур I и II категорий, большинство рыб, соя, горох, фасоль, орехи (арахис, кешью, миндаль, фундук, грецкий), кунжут, семечки подсолнуха;
- большое (10,0-15,0 г): творог жирный, свинина мясная и жирная, колбасы варёные, сосиски, яйца, орех лещина, крупы (манная, гречневая, овсяная, пшённая), мука пшеничная, макароны;
- умеренное (5,0-9,9 г): хлеб ржаной и пшеничный, крупа перловая, рис, зелёный горошек;
- малое (0,4-4,9 г): масло сливочное, почти все овощи, фрукты, ягоды и грибы.
Переваривание белков начинается в желудке и двенадцатиперстной кишке, а заканчивается в тонкой кишке. Там всасывается из белков животных продуктов примерно 93-96% аминокислот, из белков растительных продуктов — 62-80 %, из грибов — 20-40 %.
Для удовлетворения потребности организма в аминокислотах целесообразно сочетать животные и растительные продукты: мучные изделия с творогом, мясом, рыбой, молочные продукты с хлебом, молочные каши и супы, запеканки с мясом, картофель и овощи с мясом и др.
Согласно российским нормам, взрослым здоровым людям рекомендуется в сутки: 1 г белка на 1 кг идеальной массы тела, из них 50 % должно быть белков животного происхождения (по нормам ВОЗ, 0,88-0,90 г/кг, из них 50 % белков животного происхождения).
Суточная потребность взрослого трудоспособного населения в белках, г
Группа интенсивности труда | Мужчины | Женщины | |||
Возраст, лет | Белки (всего) | Белки (животного происхождения) | Белки (всего) | Белки (животного происхождения) | |
1 | 18-29 | 72 | 36,0 | 61 | 30,5 |
30-39 | 68 | 34,0 | 59 | 29,5 | |
40-59 | 65 | 32,5 | 58 | 29,0 | |
2 | 18-29 | 80 | 40,0 | 66 | 33,0 |
30-39 | 77 | 37,5 | 65 | 32,5 | |
40-59 | 72 | 36,0 | 63 | 31,5 | |
3 | 18-29 | 94 | 47,0 | 76 | 38,0 |
30-39 | 89 | 44,5 | 74 | 37,0 | |
40-59 | 84 | 42,0 | 72 | 36,0 | |
4 | 18-29 | 108 | 54,0 | 87 | 43,5 |
30-39 | 102 | 51,0 | 84 | 42,0 | |
40-59 | 96 | 48,0 | 82 | 41,0 | |
5 | 18-29 | 117 | 57,5 | — | — |
30-39 | 111 | 55,5 | |||
40-59 | 104 | 52,0 |
Для быстрого ориентировочного подсчёта количества белков полезно знать, что 10 г белков содержится в съедобной части следующих сырых продуктов:
- 40 г сыра твёрдого;
- 45 г гороха лущёного;
- 50 г говядины или куры, сыра плавленого;
- 60 г трески, хека, карпа;
- 70 г свинины мясной, творога жирного;
- 80 г яиц (2 пгг. без скорлупы), гречневой крупы;
- 90 г сосисок, овсяной крупы, пшена, макаронных изделий;
- 100 г манной и ячневой круп;
- 125 г хлеба пшеничного;
- 140 г риса;
- 200 г зелёного горошка, капусты брюссельской;
- 350 г молока, сметаны, кефира жирного, капусты кольраби;
- 400 г капусты цветной, фиников;
- 500 г картофеля, капусты белокочанной;
- 650 г салата, репы, свёклы, лисичек;
- 750 г перца сладкого, моркови;
- 900 г черешни, черники;
- 2,5 кг яблок, груш, ананасов.
Что такое аминокислотный скор? Важно знать!
Каждый человек должен придерживаться определенных норм питания. Не следует постоянно употреблять фастфуд и игнорировать овощи и фрукты. Особенно внимательно нужно относиться к белковой пище, потому что недостаток аминокислот в рационе несет массу проблем для человеческого организма.
Роль белков
Белки – это фундамент клеток человеческого организма. Они не только выполняют структурную функцию, но и являются ферментами или биологическими катализаторами, ускоряющими реакции. А при недостатке углеводов или жиров служат источником энергии. Также антитела и некоторые гормоны – это белки.
Каждый из нас знает, что белковые молекулы состоят из аминокислот, выстроенных в определенной последовательности. Но вряд ли кто-то помнит, что они делятся на две группы: заменимые и незаменимые.

Какие аминокислоты называют незаменимыми?
Если заменимые аминокислоты человеческий организм может синтезировать сам, то с незаменимыми так не получится. Они должны поступать внутрь с пищей обязательно, ибо их недостаток приводит к ослаблению памяти и снижению иммунитета. Всего таких аминокислот восемь: изолейцин, валин, лейцин, метионин, треонин, триптофан, лизин и фенилаланин.
В каких продуктах присутствуют незаменимые аминокислоты?

Все мы прекрасно знаем, что белками богата животная пища: мясо (баранина, говядина, свинина, курятина), рыба (треска, судак), яйца, молоко и разные сорта сыров. Но что насчет растительных источников? Безусловно, первое место по содержанию необходимых аминокислот занимают бобовые. Вот список бобовых продуктов:
- фасоль;
- чечевица;
- горох;
- бобы;
- соя.
Бобовые культуры были основным продуктом человека с давних времен. И не зря! Об их полезности спорить не придется, ведь влияние данного продукта на организм огромно. Бобовые способствуют очищению крови, укреплению волос, улучшению пищеварения. А по содержанию белка они едва ли уступают мясу. В настоящее время в диетологии данное семейство растений становится все более важным компонентом, так как наука уже обладает обширной информацией об их пользе.

В примере идеального дневного рациона бобовые культуры должны составлять 8-10 %, чтобы количество растительного белка было полноценным и обеспечивало необходимые процессы жизнедеятельности. Например, регулярное потребление гороха, фасоли или чечевицы приводит в норму сахар в крови и, более того, укрепляет иммунную и нервную системы.
Что такое аминокислотный скор?
Всем известно, что каждый продукт имеет свою пищевую ценность. Она характеризуется качеством белков, входящих в него. Качество этого важного компонента питания обусловлено наличием в нем незаменимых аминокислот, их расщепляемостью и соотношением к другим, заменимым, аминокислотам.
В 1973 году был введен показатель биологической ценности белков – аминокислотный скор (АС). Знать значение данного показателя очень важно, поскольку именно оно отражает количество полученного белка, точнее аминокислот, и поможет высчитать то количество пищи, которое необходимо употребить, чтобы рацион был полноценным и содержал в себе все восемь незаменимых аминокислот. Их суточная потребность приведена в таблице ниже (г на 100 г белка).
Аминокислота | Надежный уровень |
Изолейцин | 1,8 |
Валин | 1,8 |
Лейцин | 2,5 |
Метионин+Цистин | 2,4 |
Треонин | 1,3 |
Триптофан | 0,65 |
Лизин | 2,2 |
Фенилаланин+Тирозин | 2,5 |
Таким образом, аминокислотный скор – это метод определения качества белка путем сравнения аминокислот в исследуемом продукте с «идеальным» белком. Под идеальным белком понимают гипотетический белок с идеально сбалансированным аминокислотным составом.
Если значение этого отношения будет меньше единицы, то белок является неполноценным. Для получения полноценного белка необходимо комбинировать пищу так, чтобы суммарное количество данной аминокислоты было приблизительно равно ее суточным потребностям.
Как рассчитать правильно?

Чтобы рассчитать аминокислотный скор, необходимо найти массу всего белка в 100 граммах данного продукта, используя таблицу его химического состава. Затем найти содержание нужной аминокислоты (чаще оно дается в мг, а нам нужно в г; так как 1000 мг – это 1 г, то просто разделите данное число на тысячу) в 100 г продукта. Для расчета АС нужно рассчитать эту величину на 100 г белка.
Необходимо составить формулу:
- масса всего белка в 100 г продукта/100 г белка=количество необходимой аминокислоты в 100 г продукта/X (количество рассчитываемой аминокислоты в 100 г белка продукта).
Найдя Х, приступаем к расчету АС. Для этого нужно разделить полученное значение на эталонное значение данной аминокислоты. Оно приведено в таблице ниже (г на 100 г белка).
Аминокислота | Эталонное значение |
Изолейцин | 4,0 |
Валин | 5,0 |
Лейцин | 7,0 |
Метионин+Цистин | 3,5 |
Треонин | 4,0 |
Триптофан | 1,0 |
Лизин | 5,5 |
Фенилаланин+Тирозин | 6,0 |
Пример: рассчитать АС валина в жирном кефире.
Масса белка в 100 г кефира – 2,8 г. Содержание валина в данном продукте составляет 135 мг на 100 г.
Следовательно, по формуле:
1) 2,8 г – 0,135 г;
2) 100 г – X г;
3) Х=0,135*100/2,8=4,8 г.
Делим полученное значение на значение из таблицы: 5,0 г / 4,8 г = 0,96. Если умножим на 100, то получим этот показатель в процентах.
Таким образом, до нужной нормы не хватает еще 0,04, или 4 % валина в сравнении с его эталонным (нужным нашему организму) значением. Именно так можно рассчитать аминокислотный скор.
Протеин и Аминокислоты – применение с научной точки зрения
Вся тренировочная работа в зале пойдет насмарку, если недополучать белки. Без этого важнейшего питательного вещества не набрать и не сохранить “массу”. В общем, ценность белков ни у кого не вызывает сомнений, однако практика показывает, что на удивленье мало культуристов-любителей разбирается в тонкостях белкового питания. Спросите любого из них, что он знает об особенностях белкового питания, и лучший ответ, который ты получишь, это то, что минимальный уровень потребления – полтора грамма на килограмм веса (или два, а может четыре?).
Так что же нам нужно знать в первую очередь? То, что на усваиваемость, а следовательно полезность белков влияют много факторов – разные виды перевариваются пищеварительной системой по-разному. Например, одни белки идут на строительство мышц, другие сгорают, обеспечивая организм энергией. Но это еще не все. От качества протеинов, от времени потребления и промежутков между приемами пищи зависит их усвоение. Итак, в науке потребления белков вопрос номер один для атлетов – выбор “правильных” продуктов. Об этом эта статья.
Если вкратце, то белок – это длинные цепи аминокислот. А что такое аминокислоты, вы знаете? Это первичные “кирпичики” животного мироздания. Образно говоря, его “атомы”. В целом все просто. Вы едите животный или растительный белок в виде длиннющих “сцепок” разных аминокислот. В организме цепи распадаются, а затем освобожденные аминокислоты “скрепляются” в новую комбинацию – это и будет новый “человеческий” белок. Не надо думать, что речь идет только о мышечном белке. Ваши ногти и волосы тоже состоят из белка, а значит и им нужны аминокислоты для обновления состарившихся белковых молекул. Однако следует заметить, что большая часть съеденного вами белка и впрямь расходуется на нужды мышечной ткани. (Следует уточнить, что только часть аминокислот идет на мышечное “строительство”. Из других вырабатываются энергетические энзимы. Следовательно, чем энзимов больше, тем выше энергетический потенциал мышц. Что немаловажно для спортсмена.)
Аналогично случаю с витаминами, многие аминокислоты организм умеет “производить” сам. Это защитный механизм природы, оберегающий человека в периоды голодания. Увы, речь идет только о считанных аминокислотах, самых важных для поддержания жизни. Если говорить о мышечном росте, то из 20-ти остро нужных атлету аминокислот организм способен “произвести” только половину. Остальное надо в обязательном порядке получать с пищей. Вот и выходит, что половина вашего успеха и впрямь приходится на правильное питание. Как бы фанатично вы ни занимались, без тех самых аминокислот, которые можно “усвоить” только за обеденным столом, мышцы ни за что не вырастут!
Если точно по науке, то всего таких аминокислот девять: лизин, триптофан, метионин, валин, фенилаланин, лейцин, изолейцин, треонин и аргинин.
Ну как? Теперь вы понимаете, сколько подводных камней в атлетическом питании? Ведь на свете попросту нет какого-то одного продукта, который бы содержал всю нужную вам “девятку”. Получается, вам нужны самые разные виды животных и растительных протеинов? Напрашивается вопрос, да как же во всем этом разобраться?!
Эх, ребята, если бы думать надо было только о составе аминокислот! А еще важен их баланс, т.е. каких-то аминокислот должно быть больше, каких-то меньше. А еще важно качество белка. (Есть белок, который усваивается из рук вон плохо.) Ученые, чтобы не запутаться, выдумали целую шкалу критериев. Вот они:
- Биологическая ценность продукта. Она определяется полученным и усвоенным организмом азотом, выраженным в процентах. Белковая пища с высоким содержанием азота, как правило, плохо переваривается, но зато, если уж что-то усвоится, то с максимальной пользой для мышечного роста.
- Способность к усвоению. Этот показатель – самый объективный индикатор общей ценности протеина, демонстрирующий, какая его часть пойдет на строительство новых клеток.
- Относительная питательная ценность. Она высчитывается как отношение прироста мышечной массы к количеству протеина, поступившего в организм за 10 дней. Этот параметр ученые определили на основе опытов с крысами. Чем меньше уходит протеина на весовую единицу прироста, тем выше величина относительной питательной ценности, и, тем, следовательно, выше пищевая ценность протеина. Это сравнительно простой метод оценки, однако он очень полезен, когда нужно сравнить пищевую ценность различных продуктов.
- Уточненный показатель ценности белков по содержанию аминокислот. Этот индикатор, введенный в оборот в 1985 году, часто используется вместо предыдущего показателя (относительной питательной ценности), выведенного, повторим, из экспериментов над крысами, что делает его не совсем подходящим для расчета рационального питания человека. “Уточненный показатель” отражает ценность белкового продукта на основе общего содержания незаменимых аминокислот, их соотношения и биологической доступности. Правда, тут есть одна проблема. Максимальный индекс – одна единица – изначально был присвоен сое. Ну а как быть с молочной сывороткой? В те годы она выпала из поля зрения ученых, ну а она является более ценным продуктом, чем соя.
Кстати говоря, яйца и молоко – для спортсмена источники протеинов высшего качества, за ними следуют рыба и говядина, затем птица, свинина и некоторые растительные продукты. Нельзя забывать, что, хотя мясо и содержит большое количество белка, в нем также много вредных жиров (исключение – мясо цыпленка со снятой кожей). А вот рыба – просто идеальна; кроме белков, она содержит очень полезные жирные кислоты омега-3 (правда, в некоторых сортах рыбы их практически нет).
Растительная пища, как правило, содержит лишь некоторые “атлетические” аминокислоты: лизин, метионин, триптофан и треонин. И то в незначительных количествах. Например, фасоль и другие, бобовые небогаты метионином (на заметку культуристам вегетарианцам!). Значит, ценность растительных белков невелика? Ни в коем случае! Например, многие бобовые обладают великолепно сбалансированным набором аминокислот, хотя еще совсем недавно их пищевая ценность ставилось учеными под вопрос. Вообще-то растительные белки особенно полезны в комбинации друг с другом. Например, чашку вареной фасоли полезно заесть большим куском хлеба грубого помола.
Пора познакомится еще с одним показателем ценности белковых продуктов, биологической доступностью. Он отражает то количество питательных веществ, которые организм способен извлечь из полученной пищи и использовать в своих нуждах. Вот пример. Одно дело отборная говядина, и совсем другое – старая, с обилием хрящевой и соединительной ткани. Конечно же, и хрящи содержат аминокислоты, однако переваривает хрящи наш кишечник с большим трудом. Так что, большая часть аминокислот так и останется вне переваренной хрящевой ткани и будет выведена из организма.
А что случится, если в вашем рационе хронически недостает одной или нескольких незаменимых аминокислот? В этом случае ВЕСЬ белок, который вы съедаете, будет хуже усваиваться? Однозначно нет! Как раз на такой случай наш организм содержит примерно 450 г белковых излишков, никак не задействованных в активных биохимических процессах. Хранилище “запасных” протеинов – печень и кровь. Благодаря белковым резервам, нам не надо получать все девять незаменимых аминокислот с каждым приемом пищи. Например, организм может вполне безболезненно ждать поступление одной или нескольких дефицитных аминокислот в течение целых суток.
Существует мнение, что баланс аминокислот куда важнее их общего количества. На первый взгляд это кажется полной чепухой. В самом деле, ну не может горстка какого-то продукта, пусть и идеально сбалансированного по аминокислотному составу, заменить гору пищи, обычно поедаемую качком. Однако вот вам конкретный пример: вегетарианец Джим Моррисон. Это профессиональный культурист с огромной мышечной массой, по убеждению противник заклания и поедания животных. Можно было бы подумать, что для мышечного роста ему приходится съедать огромные количества растительной пищи. Но нет, Моррисон всегда довольствовался малыми порциями, но! идеально сбалансированными по составу аминокислотами. В частности, примером такого “идеального” блюда является комбинация обезжиренной муки из земляных орехов и коричневого риса.
Эффективность аминокислот в организме определяется, как считают ученые, не только их ценностью, доступностью и сбалансированностью, но и временем усвоения. Например, сывороточный протеин вызывает быструю, кратковременную концентрацию аминокислот в крови. Почему? Потому что сыворотка хорошо растворяется и переваривается, быстро уходит в кишечник, следовательно, энзимам легко расщепить ее на отдельные аминокислоты. С казеином – картина другая. Этот плотный продукт, задерживаясь в желудке, переваривается постепенно, и соответственно аминокислоты медленно концентрируются в крови. Значит, казеин бесполезен? Нет, просто если сыворотка действует практически мгновенно, то казеин – протеин замедленного действия.
В одном из научных экспериментов испытуемым, набранным из здоровых молодых мужчин в возрасте двадцати четырех лет, не занимающихся спортом, давали либо молочную сыворотку, либо казеин. В первой группе сразу же после приема сыворотки синтез белка кратковременно возрос на 68%. При этом некоторое количество аминокислот окислилось в ходе энергетических процессов. Проще говоря, организм “сжег” их ради извлечения энергии. Во второй группе рост синтеза белка едва достиг 31%, зато окислялось куда меньше аминокислот. В итоге в абсолютном пересчете из одинакового количества белка больше усвоилось казеина, чем сыворотки.
Какой вывод можно сделать из этого исследования? Если вам нужно быстро в течение часа “подхлестнуть” синтез белка, тогда ваш выбор – сывороточный протеин (правда, напомним, его действие ограничивается двумя-тремя часами). Растянуть усвоение белка можно с помощью казеина.
АМИНОКИСЛОТЫ: КРАТКОЕ ДОСЬЕ
Форма | Функции | Плюсы | Минусы |
“Свободные” аминокислоты | Не требуют переваривания; быстрое усвоение | Можно принимать отдельные виды аминокислот большими дозами (например, снижающие мышечный катаболизм) | Сравнительно высокая цена |
Гидроли-зированный протеин | Ускоряет усвоение | Предварительная обработка | Содержит пептиды с укороченной цепочкой, которые повышают уровень гормонов (ИГФ-1) |
Аминокислоты с разветвленной цепочкой | Усиливают производство аммиака во время упражнений, способствуя формированию аланина из глюкозы | Могут переходить в энергию, предотвращая мышечный катаболизм | Относительно дорогой способ энергетического “питания” мышц |
Ди-/Трипептиды | 2-молекульные и 3-молекульные белковые цепочки, лучше усваиваются организмом | Увеличивают уровень анаболического гормона ИГФ-1 (повышают эффективность использования протеина организмом) | Высокая цена |
Растительные протеины | Протеины, предназначенные для вегетарианцев и любителей растительной пищи (бобы, орехи) | Невысокая цена, низкое содержание жиров, богатые антиоксидантами, клетчаткой | Неполное содержание аминокислот (за исключением сои), необходимо комбинировать с недостающими аминокислотами |
Животные белки | Молочные продукты, птица, яйца, мясо (говядина), богаты незаменимыми аминокислотами | Как правило, содержат все незаменимые аминокислоты (за исключением желатина) | Богатые насыщенными жирами |
АМИНОКИСЛОТЫ: ВЫМЫСЕЛ И ПРАВДА.
Какие аминокислоты лучше – “свободные” или “связанные”?
Вы, конечно, уже слышали последнюю новость спортивного питания. Якобы, дипептиды и трипептиды (короткие цепочки из двух или трех молекул аминокислот) лучше усваиваются мышцами атлета, чем привычные аминокислоты в свободной форме (состоящие из отдельных разрозненных молекул). Напомним, что получить дипептиды и трипептиды нелегко, нужны супер-технологии. Отсюда печальный итог: недоступная цена. И что же выходит? Мы все остались на бобах? Наш удел малоэффективные свободные аминокислоты? Нет, не надо спешить. Свободные аминокислоты – тоже неплохой продукт, который очень даже хорошо принимает наша мускулатура. Залог высокой результативности такого продукта в том, что он усваивается без пищеварения. Аминокислоты буквально пролетают через желудок, а потом в тонком кишечнике немедленно просачиваются через его стенки в кровь. В смысле скорости действия свободные аминокислоты дадут сто очков вперед любому протеину. Другое дело, что в дозах приема имеется большая путаница. Производитель обычно рекомендует 4-6 капсул, а вот практики настаивают на огромных количествах – до 10-15 г на прием. Хотим заверить вас, что аминокислоты не подведут в любых дозах.
Аминокислоты – лучшие друзья мышечной ткани.
Когда все энергетические запасы потрачены, организм берется за крайний источник – мышечную ткань. Суть в том, что она содержит аминокислоты с разветвленными цепями (лейцин, изолейцин и валин), а они-то как раз способны “конвертироваться в чистую биологическую энергию. Но это, же означает разрушение мышц! – подумаете вы. Правильно! Впрочем, выход есть. Надо прямо во время тренинга принимать данные аминокислоты в свободной форме.
Любопытно, что вместо трех аминокислот можно принимать один лейцин, правда, в больших дозах – до 8 г. Эффект тот же. (Кстати, вместо лейцина можно принимать его метаболическую форму НМВ в гораздо меньших дозах – выйдет дешевле.)
Заблокировать разрушение мышц во время тренинга способна и аминокислота глютамин. Но вот ее вам потребуется крайне много – до 14-15 г.
Осторожно – горячо!
Ценность протеинов страдает при тепловой обработке – за счет того, что под действием высоких температур многие аминокислоты разрушаются. Первым распадается цистин. Лизин и глютамин также не любят избыточное тепло; они спекаются в молекулярные соединения, которые, практически, не усваиваются. Часто при перегреве молекулы сахара слипаются с молекулами протеинов – в результате получается знакомая всем румяная корочка. Но как раз ее-то организм и не усваивает. Или еще пример: при сильной жарке аминокислоты превращаются в т.н. D-аминокислоты, которые принципиально не годятся для мышечного роста. Значит ли это, что мясо надо есть сырым? Нет и еще раз нет! В строгом смысле слова тепловая обработка улучшает биологическую доступность протеинов. Главное, не переборщить с температурой и длительностью приготовления белкового блюда.
АМИНОКИСЛОТЫ: КРАТКИЙ СПРАВОЧНИК
Незаменимые аминокислоты – должны поступать в организм с пищей или в составе добавок?
1. Гистин:
- незаменимая аминокислота для детей
- не рекомендуется применять в виде пищевых добавок (подавляет иммунную систему у людей, подвергающихся воздействию солнечных лучей)
- предшественник нейротрансмиттера гистамина, дипептида карнозина и гомокарнозина
2. Изолейцин:
- аминокислота с разветвленной цепочкой, легко усваивается и перерабатывается в энергию для мышечных тканей
- препятствует распаду мышечных тканей.
3. Лейцин:
- аминокислота с разветвленной цепочкой, хороший источник энергии
- препятствует распаду мышечных протеинов
- хорошо усваивается в качестве питательного вещества для мозга, соперничая с тирозином, фенилаланином, триптофаном (строительное вещество для нейротрансмиттеров) и другими аминокислотами с разветвленной цепочкой
- хорошо заживляет кожные раны, способствует сращиванию костей при переломах
4. Лизин:
- снижение уровня лизина в организме замедляет синтез белка, отчего страдают мышечные и соединительные ткани
- подавляет жизнедеятельность вирусов и препятствует внезапным обострениям вируса герпеса
- необходим для синтеза карнитина
- способствует росту костной ткани, поскольку участвует в образовании коллагенов – протеинов, из которых состоят кости,
Молоко — аминокислотный состав
Вес порции, г { { { В стаканах { {1 ст — 244,0 г2 ст — 488,0 г3 ст — 732,0 г4 ст — 976,0 г5 ст — 1 220,0 г6 ст — 1 464,0 г7 ст — 1 708,0 г8 ст — 1 952,0 г9 ст — 2 196,0 г10 ст — 2 440,0 г11 ст — 2 684,0 г12 ст — 2 928,0 г13 ст — 3 172,0 г14 ст — 3 416,0 г15 ст — 3 660,0 г16 ст — 3 904,0 г17 ст — 4 148,0 г18 ст — 4 392,0 г19 ст — 4 636,0 г20 ст — 4 880,0 г21 ст — 5 124,0 г22 ст — 5 368,0 г23 ст — 5 612,0 г24 ст — 5 856,0 г25 ст — 6 100,0 г26 ст — 6 344,0 г27 ст — 6 588,0 г28 ст — 6 832,0 г29 ст — 7 076,0 г30 ст — 7 320,0 г31 ст — 7 564,0 г32 ст — 7 808,0 г33 ст — 8 052,0 г34 ст — 8 296,0 г35 ст — 8 540,0 г36 ст — 8 784,0 г37 ст — 9 028,0 г38 ст — 9 272,0 г39 ст — 9 516,0 г40 ст — 9 760,0 г41 ст — 10 004,0 г42 ст — 10 248,0 г43 ст — 10 492,0 г44 ст — 10 736,0 г45 ст — 10 980,0 г46 ст — 11 224,0 г47 ст — 11 468,0 г48 ст — 11 712,0 г49 ст — 11 956,0 г50 ст — 12 200,0 г51 ст — 12 444,0 г52 ст — 12 688,0 г53 ст — 12 932,0 г54 ст — 13 176,0 г55 ст — 13 420,0 г56 ст — 13 664,0 г57 ст — 13 908,0 г58 ст — 14 152,0 г59 ст — 14 396,0 г60 ст — 14 640,0 г61 ст — 14 884,0 г62 ст — 15 128,0 г63 ст — 15 372,0 г64 ст — 15 616,0 г65 ст — 15 860,0 г66 ст — 16 104,0 г67 ст — 16 348,0 г68 ст — 16 592,0 г69 ст — 16 836,0 г70 ст — 17 080,0 г71 ст — 17 324,0 г72 ст — 17 568,0 г73 ст — 17 812,0 г74 ст — 18 056,0 г75 ст — 18 300,0 г76 ст — 18 544,0 г77 ст — 18 788,0 г78 ст — 19 032,0 г79 ст — 19 276,0 г80 ст — 19 520,0 г81 ст — 19 764,0 г82 ст — 20 008,0 г83 ст — 20 252,0 г84 ст — 20 496,0 г85 ст — 20 740,0 г86 ст — 20 984,0 г87 ст — 21 228,0 г88 ст — 21 472,0 г89 ст — 21 716,0 г90 ст — 21 960,0 г91 ст — 22 204,0 г92 ст — 22 448,0 г93 ст — 22 692,0 г94 ст — 22 936,0 г95 ст — 23 180,0 г96 ст — 23 424,0 г97 ст — 23 668,0 г98 ст — 23 912,0 г99 ст — 24 156,0 г100 ст — 24 400,0 г
Яйцо куриное — аминокислотный состав
Вес порции, г { { Поштучно { { {1 шт — 50,0 г2 шт — 100,0 г3 шт — 150,0 г4 шт — 200,0 г5 шт — 250,0 г6 шт — 300,0 г7 шт — 350,0 г8 шт — 400,0 г9 шт — 450,0 г10 шт — 500,0 г11 шт — 550,0 г12 шт — 600,0 г13 шт — 650,0 г14 шт — 700,0 г15 шт — 750,0 г16 шт — 800,0 г17 шт — 850,0 г18 шт — 900,0 г19 шт — 950,0 г20 шт — 1 000,0 г21 шт — 1 050,0 г22 шт — 1 100,0 г23 шт — 1 150,0 г24 шт — 1 200,0 г25 шт — 1 250,0 г26 шт — 1 300,0 г27 шт — 1 350,0 г28 шт — 1 400,0 г29 шт — 1 450,0 г30 шт — 1 500,0 г31 шт — 1 550,0 г32 шт — 1 600,0 г33 шт — 1 650,0 г34 шт — 1 700,0 г35 шт — 1 750,0 г36 шт — 1 800,0 г37 шт — 1 850,0 г38 шт — 1 900,0 г39 шт — 1 950,0 г40 шт — 2 000,0 г41 шт — 2 050,0 г42 шт — 2 100,0 г43 шт — 2 150,0 г44 шт — 2 200,0 г45 шт — 2 250,0 г46 шт — 2 300,0 г47 шт — 2 350,0 г48 шт — 2 400,0 г49 шт — 2 450,0 г50 шт — 2 500,0 г51 шт — 2 550,0 г52 шт — 2 600,0 г53 шт — 2 650,0 г54 шт — 2 700,0 г55 шт — 2 750,0 г56 шт — 2 800,0 г57 шт — 2 850,0 г58 шт — 2 900,0 г59 шт — 2 950,0 г60 шт — 3 000,0 г61 шт — 3 050,0 г62 шт — 3 100,0 г63 шт — 3 150,0 г64 шт — 3 200,0 г65 шт — 3 250,0 г66 шт — 3 300,0 г67 шт — 3 350,0 г68 шт — 3 400,0 г69 шт — 3 450,0 г70 шт — 3 500,0 г71 шт — 3 550,0 г72 шт — 3 600,0 г73 шт — 3 650,0 г74 шт — 3 700,0 г75 шт — 3 750,0 г76 шт — 3 800,0 г77 шт — 3 850,0 г78 шт — 3 900,0 г79 шт — 3 950,0 г80 шт — 4 000,0 г81 шт — 4 050,0 г82 шт — 4 100,0 г83 шт — 4 150,0 г84 шт — 4 200,0 г85 шт — 4 250,0 г86 шт — 4 300,0 г87 шт — 4 350,0 г88 шт — 4 400,0 г89 шт — 4 450,0 г90 шт — 4 500,0 г91 шт — 4 550,0 г92 шт — 4 600,0 г93 шт — 4 650,0 г94 шт — 4 700,0 г95 шт — 4 750,0 г96 шт — 4 800,0 г97 шт — 4 850,0 г98 шт — 4 900,0 г99 шт — 4 950,0 г100 шт — 5 000,0 г
Яйцо куриное сырое
- Штук2,0 яиц (крупных)
- Вес с отходами113,6 г Отходы: яичная скорлупа (12% от веса). В расчётах используется вес только съедобной части продукта.